即函數(shù)的單調(diào)遞增區(qū)間為. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,

當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知函數(shù),

(1)設(shè)是函數(shù)的一個零點,求的值;

(2)求函數(shù)的單調(diào)遞增區(qū)間.

【解析】第一問利用題設(shè)知.因為是函數(shù)的一個零點,所以

所以

第二問

當(dāng),即)時,

函數(shù)是增函數(shù),

故函數(shù)的單調(diào)遞增區(qū)間是

 

查看答案和解析>>

已知函數(shù)f(x)=(x3+ax2+bx+3)•ecx,其中a、b、c∈R.
(1)當(dāng)c=1時,若x=0和x=1都是f(x)的極值點,試求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)c=1時,若3a+2b+7=0,且x=1不是f(x)的極值點,求出a和b的值;
(3)當(dāng)c=0且a2+b=10時,設(shè)函數(shù)h(x)=f(x)-3在點M(1,h(1))處的切線為l,若l在點M處穿過函數(shù)h(x)的圖象(即動點在點M附近沿曲線y=h(x)運動,經(jīng)過點M時,從l的一側(cè)進入另一側(cè)),求函數(shù)y=h(x)的表達式.

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域為(0,2),.

當(dāng)a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域為(0,2),.

(1)當(dāng)時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

給出定義:若 (其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.函數(shù).對于函數(shù),現(xiàn)給出如下判斷:

①函數(shù)是偶函數(shù);

②函數(shù)是周期函數(shù); ks5u

③函數(shù)在區(qū)間(,]上單調(diào)遞增;

④函數(shù)的圖象關(guān)于直線(k∈Z)對稱.

則判斷正確的結(jié)論的個數(shù)是(    )

A.1               B.2               C.3              D.4

查看答案和解析>>


同步練習(xí)冊答案