(3)不換刀具時(shí).第個(gè)月產(chǎn)生的效益是萬(wàn)元.成本是萬(wàn)元.更換一把刀具需要4萬(wàn)元.試問(wèn)在第幾個(gè)月更換刀具.可使這幾個(gè)月的平均利潤(rùn)最大?并估計(jì)此時(shí)的刀具厚度. 查看更多

 

題目列表(包括答案和解析)

一個(gè)口袋里有2個(gè)紅球和4個(gè)黃球,從中隨機(jī)地連取3個(gè)球,每次取一個(gè),記事件A=“恰有一個(gè)紅球”,事件B=“第3個(gè)是紅球”
求:(1)不放回時(shí),事件A、B的概率;
(2)每次抽后放回時(shí),A、B的概率.

查看答案和解析>>

(本題滿分12分)一個(gè)口袋有2個(gè)紅球和4個(gè)黃球,從中隨機(jī)地連取3個(gè)球,每次取一個(gè),記事件A=“恰有一個(gè)紅球”,事件B=“第三個(gè)是紅球”,求:

(1)不放回時(shí),事件A,B的概率;

(2)每次抽后放回時(shí),事件A,B的概率.

 

 

查看答案和解析>>

一個(gè)口袋里有2個(gè)紅球和4個(gè)黃球,從中隨機(jī)地連取3個(gè)球,每次取一個(gè),記事件A=“恰有一個(gè)紅球”,事件B=“第3個(gè)是紅球”
求:(1)不放回時(shí),事件A、B的概率;
(2)每次抽后放回時(shí),A、B的概率

查看答案和解析>>

一個(gè)口袋里有2個(gè)紅球和4個(gè)黃球,從中隨機(jī)地連取3個(gè)球,每次取一個(gè),記事件A=“恰有一個(gè)紅球”,事件B=“第3個(gè)是紅球”
求:(1)不放回時(shí),事件A、B的概率;
(2)每次抽后放回時(shí),A、B的概率

查看答案和解析>>

某地的汽車牌照全都是由七位數(shù)字所組成,每面車牌的最左邊的數(shù)字不可以是0,且任兩面車牌上的數(shù)都不相同,F(xiàn)只能用0、1、2、3、5、7、9等七個(gè)不同的鋼模來(lái)軋制車牌,制造一個(gè)車牌時(shí)同一個(gè)鋼模只能使用一次,可以把數(shù)字9的鋼模旋轉(zhuǎn)后當(dāng)成數(shù)字6來(lái)用,但6和9不能同時(shí)出現(xiàn)。現(xiàn)將符合上述要求的全部車牌依照其數(shù)值由小至大排序,因此他們依序是:1023567、1023576、1023579、…、9753210。那么第7000面車牌的號(hào)碼是________。

查看答案和解析>>

一. 填空題(每題4分,共48分)

1. {0};   2. 四;   3. 12;   4. 0;   5. 4;   6. 理、文7;   7. 理2a、文4;

8. 0.25;    9. 126;    10. 18;    11. ;    12. (或).

二.選擇題(每題4分,共16分)

13.D;  14.B;  15.C;  16.理B、文B.

三. 解答題.  17.(本題滿分12分)解:由已知得     (3分)

,  ∴           (6分)

,即,∴         (9分)

的面積S=.            (12分)

18.(本題滿分12分)解:∵,∴       (5分)

,欲使是純虛數(shù),

=                      (7分)
   ∴,  即                     (11分)
   ∴當(dāng)時(shí),是純虛數(shù).                      (12分)

19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)

解:(1)依題意設(shè),則,                (2分)

       (4分)    而,

,即,    (6分)    ∴       (7分)

從而.                            (9分)

(2)平面

∴直線到平面的距離即點(diǎn)到平面的距離           (2分)

也就是的斜邊上的高,為.                (5分)

20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)

解:(1)不正確.                          (2分)
   沒(méi)有考慮到還可以小于.                  (3分)
   正確解答如下:
   令,則
   當(dāng)時(shí),,即                  (5分)
   當(dāng)時(shí),,即                  (7分)
   ∴,即既無(wú)最大值,也無(wú)最小值.           (8分)

(2)(理)對(duì)于函數(shù),令
  ①當(dāng)時(shí),有最小值,,                   (9分)

當(dāng)時(shí),,即,當(dāng)時(shí),即

,即既無(wú)最大值,也無(wú)最小值.           (10分)
  ②當(dāng)時(shí),有最小值,, 

此時(shí),,∴,即,既無(wú)最大值,也無(wú)最小值       .(11分)
  ③當(dāng)時(shí),有最小值,,即   (12分)
,即,
∴當(dāng)時(shí),有最大值,沒(méi)有最小值.             (13分)
∴當(dāng)時(shí),既無(wú)最大值,也無(wú)最小值。
 當(dāng)時(shí),有最大值,此時(shí);沒(méi)有最小值.      (14分)

(文)∵,    ∴             (12分)

∴函數(shù)的最大值為(當(dāng)時(shí))而無(wú)最小值.     (14分)

21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)

解:(1)                            (4分)

(2)由解得                            (7分)

所以第個(gè)月更換刀具.                                       (8分)

(3)第個(gè)月產(chǎn)生的利潤(rùn)是:   (9分)

個(gè)月的總利潤(rùn):(11分)

個(gè)月的平均利潤(rùn):     (13分)

 且

在第7個(gè)月更換刀具,可使這7個(gè)月的平均利潤(rùn)最大(13.21萬(wàn)元) (14分)此時(shí)刀具厚度為(mm)                  (16分)

22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)

解:(1)              (4分)

(2)各點(diǎn)的橫坐標(biāo)為:           (8分)

(3)過(guò)作斜率為的直線交拋物線于另一點(diǎn),            (9分)

則一般性的結(jié)論可以是:

點(diǎn) 的相鄰橫坐標(biāo)之和構(gòu)成以為首項(xiàng)和公比的等比數(shù)列(或:點(diǎn)無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列;或:無(wú)限趨向于某一定點(diǎn),且其橫(縱)坐標(biāo)之差成等比數(shù)列,等)(12分)

證明:設(shè)過(guò)點(diǎn)作斜率為的直線交拋物線于點(diǎn)

          得;       

點(diǎn)的橫坐標(biāo)為,則               (14分)

于是兩式相減得:            (16分)

=  

故點(diǎn)無(wú)限逼近于點(diǎn)      

同理無(wú)限逼近于點(diǎn)                          (18分)

 

 

 


同步練習(xí)冊(cè)答案