從而的單調(diào)遞增區(qū)間為, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),,

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對(duì)稱軸為

(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因?yàn)?/p>

由余弦定理得,……11分故

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則

,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

。

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).        ①

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案