題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對(duì)任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對(duì)于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對(duì)于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數(shù)。
(1)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)的增區(qū)間;
(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過(guò)怎樣的變換得到?
【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運(yùn)用。第一問(wèn)中,利用可知函數(shù)的周期為,最大值為。
第二問(wèn)中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。
第三問(wèn)中,利用圖像將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。
解:(1)函數(shù)的最小正周期為,最大值為。
(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。
即
所求的增區(qū)間為,
即
所求的減區(qū)間為,。
(3)將的圖象先向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短為原來(lái)的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長(zhǎng)為原來(lái)的倍(橫坐標(biāo)不變),再向上平移1個(gè)單位即可。
函數(shù)在同一個(gè)周期內(nèi),當(dāng) 時(shí),取最大值1,當(dāng)時(shí),取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過(guò)怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實(shí)數(shù)根之和.
【解析】第一問(wèn)中利用
又因
又 函數(shù)
第二問(wèn)中,利用的圖象向右平移個(gè)單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,
第三問(wèn)中,利用三角函數(shù)的對(duì)稱性,的周期為
在內(nèi)恰有3個(gè)周期,
并且方程在內(nèi)有6個(gè)實(shí)根且
同理,可得結(jié)論。
解:(1)
又因
又 函數(shù)
(2)的圖象向右平移個(gè)單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的.縱坐標(biāo)不變,得到的圖象,
(3)的周期為
在內(nèi)恰有3個(gè)周期,
并且方程在內(nèi)有6個(gè)實(shí)根且
同理,
故所有實(shí)數(shù)之和為
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當(dāng)x2的系數(shù)取得最小值時(shí),求f (x)展開式中x的奇次冪項(xiàng)的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22=+2n(n-1)=+(11-m)(-1)=(m-)2+.
∵m∈N*,∴m=5時(shí),x2的系數(shù)取最小值22,此時(shí)n=3.
(2)由(1)知,當(dāng)x2的系數(shù)取得最小值時(shí),m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設(shè)這時(shí)f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項(xiàng)的系數(shù)之和為30.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com