題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時,求直線與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當(dāng)時,,則當(dāng)時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
答案
D
A
A
D
B
C
C
B
C
D
二、填空題
11. cosx+sinx _ 12.
13._____ -1____________ 14.
15. 16.
17.
三、解答題
18.解:由橢圓的標(biāo)準(zhǔn)方程知橢圓的焦點為,離心率為………………3分
因為雙曲線與橢圓有相同的焦點,所以,雙曲線焦點在x軸上,c=4,………………2分
又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分
又b2=c2-a2=16-4=12。………………………………………………………………………2分
所以雙曲線的標(biāo)準(zhǔn)方程為!1分
19.解:p真:m<0…………………………………………………………………………2分
q真:……………………………………………………………2分
故-1<m<1!2分
由和都是假命題知:p真q假,………………………………………………4分
故!4分
20.解:(1)設(shè)|PF2|=x,則|PF1|=2a-x……………………………………………………2分
∵,∴, ∴…………1分
∴,……………………………………………………………………2分
………………………………2分
(2)由題知a=4,,故………………………………………………1分
由得,…………………………………………………………………1分
又……………………………………2分
故,代入橢圓方程得,………………………………………2分
故Q點的坐標(biāo)為,,,。
…………………………………………………………………………………………………2分
21.解:(1)由函數(shù),求導(dǎo)數(shù)得,…1分
由題知點P在切線上,故f(1)=4,…………………………………………………………1分
又切點在曲線上,故1+a+b+c=4①…………………………………………………………1分
且,故3+2a+b=3②………………………………………………………………1分
③……………………2分
故……………………1分
(2)…………………………1分
x
-2
+
0
-
0
+
極大值
極小值
有表格或者分析說明…………………………………………………………………………3分
,…………………………………………………………2分
∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分
22.解:(1)由題意設(shè)過點M的切線方程為:,…………………………1分
代入C得,則,………………2分
,即M(-1,).………………………………………2分
另解:由題意得過點M的切線方程的斜率k=2,…………………………………………1分
設(shè)M(x0,y0),,………………………………………………………………1分
由導(dǎo)數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分
代入拋物線可得y0=,點M的坐標(biāo)為(-1,)……………………………………1分
(2)假設(shè)在C上存在點滿足條件.設(shè)過Q的切線方程為:,代入,
則,
且.………………………………………………………2分
若時,由于,…………………2分
當(dāng)a>0時,有
∴ 或 ;……………………………………2分
當(dāng)a≤0時,∵k≠0,故 k無解!1分
若k=0時,顯然也滿足要求.…………………………………………1分
綜上,當(dāng)a>0時,有三個點(-2+,),(-2-,)及(-2,-),且過這三點的法線過點P(-2,a),其方程分別為:
x+2y+2-2a=0,x-2y+2+2a=0,x=-2。
當(dāng)a≤0時,在C上有一個點(-2,-),在這點的法線過點P(-2,a),其方程為:x=-2!3分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com