題目列表(包括答案和解析)
A.異面 B.相交 C.平行 D.不能確定
一條直線若同時平行于兩個相交平面,則這條直線與這兩個平面的交線的位置關系是( )
A.異面 B.平行 C.相交 D.不確定
A.異面 | B.相交 | C.平行 | D.不能確定 |
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設抽取件產品作檢驗,則,
,得:,即
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當且僅當時,等號成立.此時,即為的中點.于是由,知平面,是其交線,則過作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設三棱錐的內切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當時,有最大值為.
19.(1)解:∵函數的圖象過原點,
∴即,
∴.
又函數的圖象關于點成中心對稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數列{}是以1為首項,1為公差的等差數列.
∴,即. ∴.
∴ ,,,.
(3)證明:當時,
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數學歸納法證明:
①當時,,猜想正確;
②假設時,猜想正確,即
1°若為正奇數,則為正偶數,為正整數,
2°若為正偶數,則為正整數,
,又,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|