(2) 當(dāng)時.試求的值域. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)試求的值域;

(2)設(shè),若對, ,恒 成立,試求實數(shù)的取值范圍

【解析】第一問利用

第二問中若,則,即當(dāng)時,,又由(Ⅰ)知

若對,,恒有成立,即轉(zhuǎn)化得到。

解:(1)函數(shù)可化為,  ……5分

 (2) 若,則,即當(dāng)時,,又由(Ⅰ)知.        …………8分

若對,,恒有成立,即,

,即的取值范圍是

 

查看答案和解析>>

向量a=,記f(x)=a·b,當(dāng)時,試求f(x)+f′(x)的值域。

查看答案和解析>>

已知函數(shù),其中a是大于0的常數(shù)。
(1)求函數(shù)f(x)的定義域;
(2)當(dāng)a∈(1,4)時,求函數(shù)f(x)在[2,+∞)上的最小值;
(3)若對任意x∈[2,+∞)恒有f(x)>0,試確定a的取值范圍。

查看答案和解析>>

設(shè)關(guān)于的不等式,的解集是,函數(shù) 的定義域為。若“”為真,“”為假,求的取值范圍。

【解析】本試題主要考查了命題的真智慧以及不等式的解集的綜合運用。利用

真則                      

真,則      得   

”為真,“”為假,則、一真一假分類討論得到。

真則                      

真,則      得                ……………………6分

”為真,“”為假,則、一真一假               

當(dāng)假時           ………………………………9分

當(dāng)真時           ………………………………12分

的取值范圍為    

 

查看答案和解析>>

已知函數(shù)滿足,是不為的實常數(shù)。

(1)若當(dāng)時,,求函數(shù)的值域;

(2)在(1)的條件下,求函數(shù)的解析式;

(3)若當(dāng)時,,試研究函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?

若可能,求出的取值范圍;若不可能,請說明理由。

查看答案和解析>>

         天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.;

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.,

11.,

12.,,

,

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設(shè)抽取件產(chǎn)品作檢驗,則,  

    ,得:,即

   故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.  

16. 解:由題意得,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵,

.由已知,∴,.

 ∵,

.

 ∴.        

 (2)     

當(dāng)且僅當(dāng)時,等號成立.此時,即的中點.于是由,知平面,是其交線,則過

。

 ∴就是與平面所成的角.由已知得,

 ∴, , .      

(3) 設(shè)三棱錐的內(nèi)切球半徑為,則

,,,,,

 ∴.     

18. (1) ,   

(2) ∵ ,

∴當(dāng)時,      

∴當(dāng)時,,  

,,,.

的最大值為中的最大者.

∴ 當(dāng)時,有最大值為

19.(1)解:∵函數(shù)的圖象過原點,

.      

又函數(shù)的圖象關(guān)于點成中心對稱,

.

(2)解:由題意有  即,

 即,即.

 ∴數(shù)列{}是以1為首項,1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴ ,,

(3)證明:當(dāng)時,   

 故       

20. (1)解:∵,又,

    ∴.             又∵     

    ,且

.        

(2)解:由,,猜想

    (3)證明:用數(shù)學(xué)歸納法證明:

    ①當(dāng)時,,猜想正確;

    ②假設(shè)時,猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當(dāng)時,猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是 ,

4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:

<strong id="ggp9z"></strong>

<tfoot id="ggp9z"></tfoot>
  • <li id="ggp9z"></li><td id="ggp9z"></td><dfn id="ggp9z"></dfn>

    人的編號

    1

    2

    3

    4

    5

    座位號

    1

    2

    5

    3

    4

     

    人的編號

    1

    2

    3

    4

    5

    座位號

    1

    2

    4

    5

    3

     

                                                     

     

     

    所以,符合條件的共有10×2=20種。

    5. ,又,所以

    ,且,所以

    6.略

    7.略

    8. 密文shxc中的s對應(yīng)的數(shù)字為19,按照變換公式:

    ,原文對應(yīng)的數(shù)字是12,對應(yīng)的字母是;

    密文shxc中的h對應(yīng)的數(shù)字為8,按照變換公式:

    ,原文對應(yīng)的數(shù)字是15,對應(yīng)的字母是;

    二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

    提示:

    9.  ,,

    10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

      又,所以

    11. 特殊值法。取通徑,則,

    。

    12.因,所以同解于

    所以。

    13.略 。

     

    14、(1)如圖:∵

    ∴∠1=∠2=∠3=∠P+∠PFD          

    =∠FEO+∠EFO

    ∴∠FEO=∠P,可證△OEF∽△DPF

    即有,又根據(jù)相交弦定理DF?EF=BF?AF

    可推出,從而

    ∴PF=3

    (2) ∵PFQF,  ∴  ∴

    (3)略。

    三、15.解:(1)  依題知,得  

    文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹洳簧普叨闹。精通?nèi)部學(xué)員使用么老師答疑電話
13702071025
 所以

    (2) 由(1)得

        

    ∴            

    的值域為。

     

    16.解:設(shè)飛機(jī)A能安全飛行的概率為,飛機(jī)B能安全飛行的概率為,則

      所以

    當(dāng)時,,,;

    當(dāng)時,,,;

    當(dāng)時,,,

    故當(dāng)時,飛機(jī)A安全;當(dāng)時,飛機(jī)A與飛機(jī)B一樣安全;當(dāng)時,飛機(jī)B安全。

     

    17.(1) 證明:以D為坐標(biāo)原點,DA所在的直線x

    軸,建立空間直角坐標(biāo)系如圖。

    設(shè),則

    ,,,

    ,

    ,所以

                        即  ,也就是

    ,所以 ,即。

    (2)解:方法1、找出二面角,再計算。

     

    方法2、由(1)得:(當(dāng)且僅當(dāng)取等號)

    分別為的中點,于是 ,。

    ,所以 ,

    設(shè)是平面的一個法向量,則

      也就是

    易知是平面的一個法向量,

                       

    18.(1) 證明:依題知得:

    整理,得

     所以   即 

    故 數(shù)列是等差數(shù)列。

    (2) 由(1)得   即 ()

      所以

     =

    =

     

    19.解:(1) 依題知得

    欲使函數(shù)是增函數(shù),僅須

    同步練習(xí)冊答案