題目列表(包括答案和解析)
等比數列的前項和為,已知,,成等差數列,則的公比為 .
選做題:在下面三道小題中選做兩題,三題都選只計算前兩題的得分.
等比數列的前項和為,已知,,成等差數列,則的公比為 。
選做題:在下面三道小題中選做兩題,三題都選只計算前兩題的得分.
下面有五個命題:
①函數的最小正周期是
②終邊在y軸上的角的集合是
③在同一坐標系中,函數的圖象和函數y = x的圖象有三個公共點
④把函數的圖象向右平移的圖象
⑤函數上是減函數
其中,真命題的序號是_______________.
選做題:從第13、14、15三道題中選做兩題,三題都答的只計算前兩題的得分.
下面有五個命題:
①函數的最小正周期是
②終邊在y軸上的角的集合是
③在同一坐標系中,函數的圖象和函數y = x的圖象有三個公共點
④把函數的圖象向右平移的圖象
⑤函數上是減函數
其中,真命題的序號是_______________.
選做題:從第13、14、15三道題中選做兩題,三題都答的只計算前兩題的得分.
某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把名使用血清的人與另外名未用血清的人一年中的感冒記錄作比較,提出假設:“這種血清不能起到預防感冒的作用”,利用列聯表計算得,經查對臨界值表知.
對此,四名同學做出了以下的判斷:
p:有的把握認為“這種血清能起到預防感冒的作用”
q:若某人未使用該血清,那么他在一年中有的可能性得感冒
r:這種血清預防感冒的有效率為
s:這種血清預防感冒的有效率為
則下列結論中,正確結論的序號是 .(把你認為正確的命題序號都填上)
(1) p∧﹁q ; (2)﹁p∧q ;
(3)(﹁p∧﹁q)∧(r∨s); (4)(p∨﹁r)∧(﹁q∨s)
▲選做題:在下面三道小題中選做兩題,三題都選的只計算前兩題的得分.
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用代替得
4.
5.,或
6.
7.略
8.
二、填空題:9.60; 10. 15:10:20 ; 11.; 12.;
13.0.74 ; 14. ①、;②、圓;③.
提示: 9.
10.,,
11.,
12.,,,
,
13.
14.略
三、解答題
15. 解:(1).
(2)設抽取件產品作檢驗,則,
,得:,即
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得,,原式可化為,
而
,
故原式=.
17. 解:(1)顯然,連接,∵,,
∴.由已知,∴,.
∵∽, ,
∴ 即 .
∴.
(2)
當且僅當時,等號成立.此時,即為的中點.于是由,知平面,是其交線,則過作
。
∴就是與平面所成的角.由已知得,,
∴, , .
(3) 設三棱錐的內切球半徑為,則
∵,,,,,
∴.
18. 解: (1) ,
(2) ∵ ,
∴當時,
∴當時,,
∵,,,.
∴ 的最大值為或中的最大者.
∵
∴ 當時,有最大值為.
19.(1)解:∵函數的圖象過原點,
∴即,
∴.
又函數的圖象關于點成中心對稱,
∴, .
(2)解:由題意有 即,
即,即.
∴數列{}是以1為首項,1為公差的等差數列.
∴,即. ∴.
∴ ,,,.
(3)證明:當時,
故
20. (1)解:∵,又,
∴. 又∵
,且
∴ .
(2)解:由,,猜想
(3)證明:用數學歸納法證明:
①當時,,猜想正確;
②假設時,猜想正確,即
1°若為正奇數,則為正偶數,為正整數,
2°若為正偶數,則為正整數,
,又,且
所以
即當時,猜想也正確
由①,②可知,成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1. 即
2. 即
3. 即,也就是 ,
4.先確定是哪兩個人的編號與座位號一致,有種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形:
|