當(dāng)時.7.=1.不合題意, 查看更多

 

題目列表(包括答案和解析)

已知冪函數(shù)滿足。

(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

(1)對于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時,

當(dāng)k=1時,,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對稱軸方程為:,

當(dāng)時,,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數(shù)i,j滿足下列條件:
①i∉Ai,且每一個Ai至少含有三個元素;
②i∈Aj的充要條件是j∉Aj(其中i≠j).
為了表示這些子集,作n行n列的數(shù)表(即n×n數(shù)表),規(guī)定第i行第j列數(shù)為:aij=
0   當(dāng)i∉AJ
1        當(dāng)i∈AJ時  

(1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數(shù)表(填符合題意的一種即可);
(2)用含n的代數(shù)式表示n×n數(shù)表中1的個數(shù)f(n),并證明n≥7;
(3)設(shè)數(shù)列{an}前n項和為f(n),數(shù)列{cn}的通項公式為:cn=5an+1,證明不等式:
5cmn
-
cmcn
>1對任何正整數(shù)m,n都成立.(第1小題用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

設(shè)橢圓 )的一個頂點(diǎn)為,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線  與橢圓 交于 , 兩點(diǎn).

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點(diǎn)為,即

,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當(dāng)直線斜率不存在時,經(jīng)檢驗(yàn)不合題意.                    --------5分

②當(dāng)直線斜率存在時,設(shè)存在直線,且.

,       ----------7分

,,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時,

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時,

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時,上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時,令,對稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時,上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>


同步練習(xí)冊答案