(4)對(duì)于任意的直線與平面.若在平面α內(nèi).則存在直線m⊥,若不在平面α內(nèi).且⊥α.則平面α內(nèi)任意一條直線都垂直于.若不在平面α內(nèi).且于α不垂直.則它的射影在平面α內(nèi)為一條直線.在平面內(nèi)必有直線垂直于它的射影.則與垂直.綜上所述.選C. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,線段AB與y軸交于點(diǎn)F(0,
12
),直線AB的斜率為k,且滿足|AF|•|BF|=1+k2
(1)證明:對(duì)任意的實(shí)數(shù)k,一定存在以y軸為對(duì)稱軸且經(jīng)過A、B、O三點(diǎn)的拋物線C,并求出拋物線C的方程;
(2)對(duì)(1)中的拋物線C,若直線l:y=x+m(m>0)與其交于M、N兩點(diǎn),求∠MON的取值范圍.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線x=9上的點(diǎn),直線QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線MN
必過x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);
(3)實(shí)際上,第(2)小題的結(jié)論可以推廣到任意的橢圓、雙曲線以及拋物線,請(qǐng)你對(duì)拋物線y2=2px(p>0)寫出一個(gè)更一般的結(jié)論,并加以證明.

查看答案和解析>>

在平面直角坐標(biāo)系中,已知三個(gè)點(diǎn)列{An},{Bn},{Cn},其中An(n,an),Bn(n,bn),Cn(n-1,0),滿足向量
AnAn+1
與向量
BnCn
平行,并且點(diǎn)列{Bn}在斜率為6的同一直線上,n=1,2,3,….
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)試用a1,b1與n表示an(n≥2);
(3)設(shè)a1=a,b1=-a,是否存在這樣的實(shí)數(shù)a,使得在a6與a7兩項(xiàng)中至少有一項(xiàng)是數(shù)列{an}的最小項(xiàng)?若存在,請(qǐng)求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說明理由;
(4)若a1=b1=3,對(duì)于區(qū)間[0,1]上的任意λ,總存在不小于2的自然數(shù)k,當(dāng)n≥k時(shí),an≥(1-λ)(9n-6)恒成立,求k的最小值.

查看答案和解析>>

在平面直角坐標(biāo)系中,若,且

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)已知定點(diǎn),若斜率為的直線過點(diǎn)并與軌跡交于不同的兩點(diǎn),且對(duì)于軌跡上任意一點(diǎn),都存在,使得成立,試求出滿足條件的實(shí)數(shù)的值。

查看答案和解析>>

在平面直角坐標(biāo)系中,已知三個(gè)點(diǎn)列,其中,滿足向量與向量平行,并且點(diǎn)列在斜率為6的同一直線上,。

證明:數(shù)列是等差數(shù)列;

試用表示

設(shè),是否存在這樣的實(shí)數(shù),使得在兩項(xiàng)中至少有一項(xiàng)是數(shù)列的最小項(xiàng)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由;

,對(duì)于區(qū)間[0,1]上的任意l,總存在不小于2的自然數(shù)k,當(dāng)n??k時(shí),恒成立,求k的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案