下列結(jié)論正確的是 查看更多

 

題目列表(包括答案和解析)

下列結(jié)論正確的是
 

①不等式x2≥4的解集為{x|x≥±2}
②不等式x2-9<0的解集為{x|x<3}
③不等式(x-1)2<2的解集為{x|1-
2
<x<1+
2
}
④設(shè)x1,x2為ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,則不等式ax2+bx+c<0的解集為{x|x1<x<x2}

查看答案和解析>>

13、下列結(jié)論正確的是

①各個(gè)面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐;
④圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線.

查看答案和解析>>

下列結(jié)論正確的是(  )
A、當(dāng)x>0且x≠1時(shí),lgx+
1
lgx
≥2
B、當(dāng)x>0時(shí),
x
+
1
x
≥2
C、當(dāng)x≥2時(shí),x+
1
x
的最小值為2
D、當(dāng)0<x≤2時(shí),x-
1
x
無(wú)最大值

查看答案和解析>>

下列結(jié)論正確的是( 。
A、不等式x2≥4的解集為{x|x≥±2}
B、不等式x2-9<0的解集為{x|x<3}
C、不等式(x-1)2<2的解集為{x|1-
2
<x<1+
2
}
D、設(shè)x1,x2為ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,則不等式ax2+bx+c<0的解集為{x|x1<x<x2}

查看答案和解析>>

1、下列結(jié)論正確的是( 。
①函數(shù)關(guān)系是一種確定性關(guān)系;
②相關(guān)關(guān)系是一種非確定性關(guān)系;
③回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種方法;
④回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

查看答案和解析>>

一、選擇題:

1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

二、填空題:

13、    14、  15、對(duì)任意使   16、2    17、

18、    19、   20、8      21、     22、40    23、   

24、4       25、    26、

三、解答題:

27解:(1)由,得

,

, ,

于是, ,

,即

(2)∵角是一個(gè)三角形的最小內(nèi)角,∴0<,,

設(shè),則(當(dāng)且僅當(dāng)時(shí)取=),

故函數(shù)的值域?yàn)?sub>

28證明:(1)同理,

又∵       ∴平面. 

(2)由(1)有平面

又∵平面,    ∴平面平面

(3)連接AG并延長(zhǎng)交CD于H,連接EH,則,

在AE上取點(diǎn)F使得,則,易知GF平面CDE.

29解:(1),                     

,                         

。   

(2)∵,

∴當(dāng)且僅當(dāng),即時(shí),有最大值。

,∴取時(shí),(元),

此時(shí),(元)。答:第3天或第17天銷售收入最高,

此時(shí)應(yīng)將單價(jià)定為7元為好

30解:(1)設(shè)M

∵點(diǎn)M在MA上∴  ①

同理可得

由①②知AB的方程為

易知右焦點(diǎn)F()滿足③式,故AB恒過(guò)橢圓C的右焦點(diǎn)F(

(2)把AB的方程

又M到AB的距離

∴△ABM的面積

31解:(Ⅰ)  

所以函數(shù)上是單調(diào)減函數(shù).

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

即ㄓ是鈍角三角形

(Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

 

  ①         

而事實(shí)上,    ②

由于,故(2)式等號(hào)不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形.

32解:(Ⅰ)

    

故數(shù)列為等比數(shù)列,公比為3.           

(Ⅱ)

                 

所以數(shù)列是以為首項(xiàng),公差為 loga3的等差數(shù)列.

                           

=1+3,且

                           

    

(Ⅲ)

      

假設(shè)第項(xiàng)后有

      即第項(xiàng)后,于是原命題等價(jià)于

      

  故數(shù)列項(xiàng)起滿足.    

 


同步練習(xí)冊(cè)答案