題目列表(包括答案和解析)
設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<對任意成立?若存在,求出x0的取值范圍;若不存在,請說明理由.
已知函數(shù)
(1)若在上為單調(diào)減函數(shù),求實數(shù)取值范圍;
(2)若求在[-3,0]上的最大值和最小值。已知函數(shù),曲線在點x=1處的切線l不過第四象限且斜率為3,又坐標(biāo)原點到切線l的距離為,若時,有極值.
(I) 求a、b、c的值;
(II) 求在[-3,1]上的最大值和最小值.
已知函數(shù)f(x)=-x3+3x2+9x+a.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.
思路 本題考查多項式的導(dǎo)數(shù)公式及運用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值,題目中需注意應(yīng)先比較f(2)和f(-2)的大小,然后判定哪個是最大值從而求出a.
已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值
一、選擇題:
1.B 2.D 3.A 4.A 5.A 6.B 7.B 8.B 9.C 10.C
二、填空題:
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.1)、5) 21. 22. 23.3)4) 24.3
三、解答題:
25解:(Ⅰ) ……2分
.
的最小正周期是.
(Ⅱ) ∵,
∴.
∴當(dāng)即時,函數(shù)取得最小值是.
∵,
∴.
26解:(1)∵,∴,即.
∴.
由,得或;
由,得.因此,
函數(shù)的單調(diào)增區(qū)間為,;單調(diào)減區(qū)間為.
在取得極大值為;在取得極小值為.
由∵, 且
∴在[-,1]上的的最大值為,最小值為.
(2) ∵,∴.
∵函數(shù)的圖象上有與軸平行的切線,∴有實數(shù)解.
∴,∴,即 .
因此,所求實數(shù)的取值范圍是.
27解:(1)在中,,
而PD垂直底面ABCD,
,
在中,,即為以為直角的直角三角形。
設(shè)點到面的距離為,
由有,
即 ,
;
(2),而,
即,,,是直角三角形;
(3)時,,
即,
的面積
28解:(I)因為,成立,所以:,
由: ,得 ,
由:,得
解之得: 從而,函數(shù)解析式為:
(2)由于,,設(shè):任意兩數(shù) 是函數(shù)圖像上兩點的橫坐標(biāo),則這兩點的切線的斜率分別是:
又因為:,所以,,得:
知:
故,當(dāng) 是函數(shù)圖像上任意兩點的切線不可能垂直
29解:(1)∵ ∴
兩式相減得: ∴
又時, ∴
∴是首項為,公比為的等比數(shù)列
∴
(2)
以上各式相加得:
30解:(1)
(2)由
由
,
由此得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com