20.[解](1)如圖建立直角坐標(biāo)系.則點(diǎn)P. 橢圓方程為.(2)由橢圓方程.得 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>


選作題,請(qǐng)考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長(zhǎng)線交于的外按圓于點(diǎn)E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。

23、選修4—4:坐標(biāo)系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤
P為半圓C上一點(diǎn),A(1,0)O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與  的長(zhǎng)度均為。
(I)求以O(shè)為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系求點(diǎn)M的極坐標(biāo)。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)  
(I)若不等式的解集為求a值。
(II)在(I) 條件下,若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>


選作題,請(qǐng)考生在第(22)、(23)、(24)三題中任選一題做答,如果多做,則按所做的第一題記分,每道題滿分10分)
22、選修4—1:幾何證明選講
如圖,△ABC的角平分線AD的延長(zhǎng)線交于的外按圓于點(diǎn)E。
(I)證明:△ABC∽△ADC
(II)若△ABC的面積為AD·AE,求∠BAC的大小。

23、選修4—4:坐標(biāo)系與參數(shù)方程
已知半圓C的參數(shù)方程為參數(shù)且(0≤
P為半圓C上一點(diǎn),A(1,0)O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與  的長(zhǎng)度均為。
(I)求以O(shè)為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系求點(diǎn)M的極坐標(biāo)。
(II)求直線AM的參數(shù)方程。
24、選修4—5,不等式選講
已知函數(shù)  
(I)若不等式的解集為求a值。
(II)在(I) 條件下,若對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點(diǎn),且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)   求證:A1C⊥平面BCDE;

(2)   若M是A1D的中點(diǎn),求CM與平面A1BE所成角的大;

(3)   線段BC上是否存在點(diǎn)P,使平面A1DP與平面A1BE垂直?說(shuō)明理由

【解析】(1)∵DE∥BC∴又∵

(2)如圖,以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C-xyz,

設(shè)平面的法向量為,則,又,,所以,令,則,所以,

設(shè)CM與平面所成角為。因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244479838554563_ST.files/image021.png">,

所以

所以CM與平面所成角為。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案