已知A.B.C三點的坐標分別為.. 查看更多

 

題目列表(包括答案和解析)

已知A、B、C三點的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),α∈(
π
2
,
2
)

(1)若|
AC
|=|
BC
|
,求角α的值;
(2)若
AC
BC
=-1
,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

已知A、B、C三點的坐標分別為A(-sin
x
2
sin
x
2
)
,B(sin
x
2
,-2cos
x
2
)
,C(cos
x
2
,0).
(Ⅰ)求向量
AC
和向量
BC
的坐標;
(Ⅱ)設f(x)=
AC
BC
,求f(x)的最小正周期;
(Ⅲ)求當x∈[
π
12
,
6
]
時,f(x)的最大值及最小值.

查看答案和解析>>

已知A、B、C三點的坐標分別為A(3,0)、B(3,0)、C(cosα,sinα)且
AC
BC
=-
1
2
.求:
(Ⅰ)sinα+cosα的值;
(Ⅱ)
sin(π-4α)•cos2(π-α)
1+sin(
π
2
+4α)
的值.

查看答案和解析>>

已知A、B、C三點的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),α∈(
π
2
,
2
)

(1)若|
AC
|=|
BC
|,求角α
的值;
(2)若
AC
BC
=-1,求
cos2α
sin(α-
π
4
)
的值

查看答案和解析>>

已知A、B、C三點的坐標分別為(1,1)、(3,2)、(2,k+1),若△ABC為等腰三角形,求k的值.

查看答案和解析>>

 

一、選擇題

1.D   2.A   3.C   4.B   5.D   6.A   7.A   8.A   9.B   10.D

2,4,6

11.40    12.   13.3    14.①②③④

三、解答題

15.解:(1)設數列

由題意得:

解得:

   (2)依題

,

為首項為2,公比為4的等比數列

   (2)由

16.解:(1),

   (2)由

 

17.解法1:

設輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時。

依題意,設與速度有關的每小時燃料費用為,

答:輪船的速度應定為每小時20公里,行駛1公里所需的費用總和最小。

解法2:

設輪船的速度為x千米/小時(x>0),

則航行1公里的時間為小時,

依題意,設與速度有關的每小時燃料費用為

元,

且當時等號成立。

答:輪船的速度應定為每小時20公里,行駛1公里所需的費用總和最小。

18.證明:(1)連結AC、BD交于點O,再連結MO ,

   (2)

   

19.解:(1),半徑為1依題設直線,

    由圓C與l相切得:

   (2)設線段AB中點為

    代入即為所求的軌跡方程。

   (3)

   

20.解:(1)

   (2)

   (3)由(2)知

在[-1,1]內有解

 

 

 


同步練習冊答案