22.解:(1)∵f(a)=a+1=a a+1, ∴f(x)=ax+1, ∴a=f(a)-1=a a, 又a=b .∴=a, (n∈N).--3分 ∴數(shù)列{a}為首項為b,公比為a.各項均為正的等比數(shù)列.--4分 (2)①方法一:Q=++==.--5分 ∵T=aaa=ba,∴ba=.--7分 又S= a+a+a=,∴Q=.--9分 方法二:T=aaa.T= aaa ∴T= aaa aa=(aa) Q=++=++. ∴2 Q=(+)+(+)+(+) =++= ∴Q=.--9分 ②Q=++-..+==--10分 Tn.=a a-. a=ba, ∴ba=.--12分 又= a+ a+-.+ a= ∴Q=---14分 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z)
,曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax+
1
x+b
(a,b∈Z)
,曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(0,-1)且與直線y=-1有且只有一個公共點;設(shè)點P(x0,y0)是函數(shù)y=f(x)圖象上任意一點,過點P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心Q;
(3)證明:線段PM,PN長度的乘積PM•PN為定值;并用點P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

設(shè)函數(shù)f(x)=
x2+1
-ax
,其中a>0,
(1)解不等式f(x)≤1;
(2)證明:當(dāng)a≥1時,函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)函數(shù).

查看答案和解析>>

設(shè)函數(shù)f(x)=loga(1-
ax
)
,其中0<a<1,
(1)證明:f(x)是(a,+∞)上的減函數(shù);
(2)解不等式f(x)>1.

查看答案和解析>>


同步練習(xí)冊答案