22. 在平面直角坐標(biāo)系中.已知矩形的長為2.寬為1..邊分別在軸.軸的正半軸上.點(diǎn)與坐標(biāo)原點(diǎn)重合.將矩形折疊.使點(diǎn)落在線段上. (Ⅰ)若折痕所在直線的斜率為.試寫出折痕所在直線的方程, (Ⅱ)求折痕的長的最大值. 南昌十六中2006屆高三數(shù)學(xué)周考試卷(5) 考試時(shí)間:2005-10-27 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切

于坐標(biāo)原點(diǎn).橢圓與圓的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為

  (1)求圓的方程;

  (2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于

線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)

在平面直角坐標(biāo)系中,已知圓心在第二象限、半徑為的圓與直線相切

于坐標(biāo)原點(diǎn).橢圓與圓的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為

  (1)求圓的方程;

  (2)試探究圓上是否存在異于原點(diǎn)的點(diǎn),使到橢圓右焦點(diǎn)F的距離等于

線段的長.若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

.(本小題滿分14分)
在平面直角坐標(biāo)系上,設(shè)不等式組)所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/d/qmkmd.gif" style="vertical-align:middle;" />,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為.(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;(Ⅱ)設(shè)數(shù)列的前r項(xiàng)和為,數(shù)列的前r項(xiàng)和,是否存在自然數(shù)m?使得對(duì)一切,恒成立。若存在,求出m的值,若不存在,請說明理由。

查看答案和解析>>

(本小題滿分14分)
在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且橢圓的離心率為
(1)求橢圓的方程
(2)是否存在以為直角頂點(diǎn)且內(nèi)接于橢圓的等腰直角三角形?若存在,求出共有幾個(gè);若不存在,請說明理由

查看答案和解析>>

(本小題滿分14分)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且三角形POA的三邊所在直線的斜率滿足kOP+kOA=kPA

( I)求點(diǎn)P的軌跡C的方程;

(Ⅱ)若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且,直線OPQA交于點(diǎn)M,問:是否存在點(diǎn)P使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

 

 

 

 

查看答案和解析>>


同步練習(xí)冊答案