長為2的線段PO⊥平面α.O為垂足.A.B是平面α內(nèi)兩動點.若tan∠PAO= . tan∠PBO=2,則P點到直線AB的距離的最大值是 ( ) A.2cm B.cm C.cm D.cm 查看更多

 

題目列表(包括答案和解析)

長為2cm的線段PO⊥面α,O為垂足,A,B是平面α內(nèi)兩動點,若tan∠PAO=
1
2
,tan∠PBO=2,則點P與直線AB的距離最大值是( 。

查看答案和解析>>

長為2cm的線段PO⊥面α,O為垂足,A,B是平面α內(nèi)兩動點,若tan∠PAO=
1
2
,tan∠PBO=2,則點P與直線AB的距離最大值是( 。
A.2
5
cm
B.
6
17
34
cm
C.
2
357
17
cm
D.
5
cm

查看答案和解析>>

長為2cm的線段PO⊥面α,O為垂足,A,B是平面α內(nèi)兩動點,若tan∠PAO=
1
2
,tan∠PBO=2,則點P與直線AB的距離最大值是( 。
A.2
5
cm
B.
6
17
34
cm
C.
2
357
17
cm
D.
5
cm

查看答案和解析>>

長為2cm的線段PO⊥面α,O為垂足,A,B是平面α內(nèi)兩動點,若tan∠PAO=數(shù)學公式,tan∠PBO=2,則點P與直線AB的距離最大值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)證明:AP⊥BC;
(Ⅱ)在線段AP上是否存在點M,使得二面角A-MC-β為直二面角?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案