題目列表(包括答案和解析)
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí), 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí), 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時(shí)
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時(shí),極大值為,無極小值
時(shí) 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對稱, 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對稱, 當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)的直線與線段分別相交于點(diǎn)。若。
(1)求證:與的關(guān)系為;
(2)設(shè),定義函數(shù),點(diǎn)列在函數(shù)的圖像上,且數(shù)列是以首項(xiàng)為1,公比為的等比數(shù)列,為原點(diǎn),令,是否存在點(diǎn),使得?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由。
(3)設(shè)函數(shù)為上偶函數(shù),當(dāng)時(shí),又函數(shù)圖象關(guān)于直線對稱,當(dāng)方程在上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)的取值范圍。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com