(9) . (10)橢圓的離心率是 .準(zhǔn)線方程是 . (11)已知.那么的值為 .的值為 . (12)如圖.正方體的棱長(zhǎng)為.將該正方體沿對(duì)角面切成兩塊.再將這兩塊拼接成一個(gè)不是正方體的四棱柱.那么所得四棱柱的全面積為 . (13)從-1.0.1.2這四個(gè)數(shù)中選三個(gè)不同的數(shù)作為函數(shù)的系數(shù).可組成不同的二次函數(shù)共有 個(gè).其中不同的偶函數(shù)共有 個(gè). (14)若關(guān)于的不等式的解集為.則實(shí)效的取值范圍是 , 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1)。一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1)。一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若均不重合,設(shè)直線的斜率分別為,求的值。

 

查看答案和解析>>

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>


同步練習(xí)冊(cè)答案