若有窮數列a1,a2,…,an(n是正整數),滿足a1=an,a2=an-1,…,an=a1即ai=an-i+1(i是正整數,且1≤i≤n),就稱該數列為“對稱數列”。
(1)已知數列{bn}是項數為7的對稱數列,且b1,b2,b3,b4成等差數列,b1=2,b4=11,試寫出{bn}的每一項;
(2)已知{cn}是項數為2k-1(k≥1)的對稱數列,且ck,ck+1,…,c2k-1構成首項為50,公差為-4的等差數列,數列{cn}的前2k-1項和為S2k-1,則當k為何值時,S2k-1取到最大值?最大值為多少?
(3)對于給定的正整數m>1,試寫出所有項數不超過2m的對稱數列,使得1,2,22,…,2m-1成為數列中的連續(xù)項;當m>1500時,試求其中一個數列的前2008項和S2008。