9.在直角坐標(biāo)系中.O是原點(diǎn).= .動點(diǎn)P在直線x=3上運(yùn)動.若從動點(diǎn)P向Q點(diǎn)的軌跡引切線.則所引切線長的最小值為 A.4 B.5 C.2 D. 查看更多

 

題目列表(包括答案和解析)

在直角坐標(biāo)系中,O是原點(diǎn),=(-2+cosθ,-2+sinθ)(θ∈R),動點(diǎn)P在直線x+y=1上運(yùn)動,若從動點(diǎn)P向Q點(diǎn)的軌跡引切線,則所引切線長的最小值為________.

查看答案和解析>>

在直角坐標(biāo)系中,已知一個圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個圓上任意一點(diǎn)Py軸作垂線段PP′,P′為垂足.

   (1)求線段PP′中點(diǎn)M的軌跡C的方程;

   (2)過點(diǎn)Q(-2,0)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn),且以為方向向量的直線上一動點(diǎn),滿足O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

在直角坐標(biāo)系中,已知一個圓心在坐標(biāo)原點(diǎn),半徑為2的圓,從這個圓上任意一點(diǎn)Py軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)Q(-2,0)作直線l與曲線C交于AB兩點(diǎn),設(shè)N是過點(diǎn),且以為方向向量的直線上一動點(diǎn),滿足O為坐標(biāo)原點(diǎn)),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

在平面直角坐標(biāo)系中,O為原點(diǎn),A(-1,0),B(0,),C(3,0),動點(diǎn)D滿足=1,則||的取值范圍是

[  ]

A.

[4,6]

B.

[-1,+1]

C.

[2,2]

D.

[-1,+1]

查看答案和解析>>

在平面直角坐標(biāo)系中,O為原點(diǎn),已知兩點(diǎn)A(3,1),B(-1,3),若C滿足=α+β其中α,β∈R且α+β=1,則點(diǎn)C的軌跡方程是

[  ]

A.3x+2y-11-0

B.(x-1)2+(y-2)2=5

C.2x-y=0

D.x+2y-5=0

查看答案和解析>>


同步練習(xí)冊答案