已知函數(shù)的定義域為R.對任意都有且時. (1)試判斷函數(shù)的奇偶性, (2)試判斷在區(qū)間上.是否有最大值或最小值?如果有.求出其最大值或最小值,如果沒有.說明理由, (3)解關(guān)于的不等式 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該

 

函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域為6,+∞,求的值;

 

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

 

(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的

 

函數(shù)的特例.

(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你

 

的研究結(jié)論).

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域為6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

(本小題滿分14分)已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該
函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).
(1)如果函數(shù)>0)的值域為6,+∞,求的值;
(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;
(3)對函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的
函數(shù)的特例.
(4)(理科生做)研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你
的研究結(jié)論).

查看答案和解析>>

(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點(,2).
(Ⅰ)求實數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時x值的集合
(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對于任意x∈R,f(|x|)>0恒成立,試確定實數(shù)k的取值范圍

查看答案和解析>>

(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過點(,2).

    (Ⅰ)求實數(shù)m的值;

    (Ⅱ)求函數(shù)f(x)的最小值及此時x值的集合

(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R

    (Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間

    (Ⅱ)若k>0,且對于任意x∈R,f(|x|)>0恒成立,試確定實數(shù)k的取值范圍

 

查看答案和解析>>


同步練習(xí)冊答案