(理)已知函數(shù)f(x)在上有定義.f()=-1,當(dāng)且僅當(dāng)0<x<1時(shí).f(x)<0,且對(duì)任意x.y∈?,?都有f(x)+f(y)=f().試證明: (Ⅰ)f(x)為奇函數(shù), (Ⅱ)f(x)在上單調(diào)遞減, (Ⅲ)1+f()+f()+-+f(=0.(n∈N*) (文)已知函數(shù)f(x)在上有定義.f()=-1.當(dāng)且僅當(dāng)0<x<1時(shí).f(x)<0,且對(duì)任意x.y∈?,?都有f(x)+f(y)=f().試證明: (Ⅰ)f(0)=0且f(x)為奇函數(shù), (Ⅱ)若對(duì)數(shù)列{xn}滿足:x1=,xn+1=,?求f(xn);? 的條件下.求. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)
已知函數(shù)f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)當(dāng)時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(Ⅱ)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];
(Ⅲ)是否存在實(shí)數(shù)m,使曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

(本小題滿分14分)

已知函數(shù)f(x)=m(x-1)2-2x+3+lnx(m≥1).

(Ⅰ)當(dāng)時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;

(Ⅱ)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];

(Ⅲ)是否存在實(shí)數(shù)m,使曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值,若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

(本小題滿分14分)

已知函數(shù)f(x)=m(x-1)2-2x+3+lnx(m≥1).

(Ⅰ)當(dāng)時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;

(Ⅱ)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];

(Ⅲ)是否存在實(shí)數(shù)m,使曲線C:y=f(x)在點(diǎn)P(1,1)處的切線l與曲線C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值,若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=aex,g(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對(duì)數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求證:對(duì)任意n ÎN*,    f(n)+g(n)>2n

  (Ⅲ) 設(shè)y =g(x-1)的圖象為C1h(x)=-x2+bx的圖象為C2,若C1C2相交于PQ,過PQ中點(diǎn)垂直于x軸的直線分別交C1C2M、N,問是否存在實(shí)數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

查看答案和解析>>

(本小題滿分14分)已知函數(shù)f(x)=aexg(x)= lna-ln(x +1)(其中a為常數(shù),e為自然對(duì)數(shù)底),函數(shù)y =f(x)在A(0,a)處的切線與y =g(x)在B(0,lna)處的切線互相垂直.

  (Ⅰ) 求f(x) ,g(x)的解析式;

  (Ⅱ) 求證:對(duì)任意n ÎN*,    f(n)+g(n)>2n;

  (Ⅲ) 設(shè)y =g(x-1)的圖象為C1,h(x)=-x2+bx的圖象為C2,若C1C2相交于P、Q,過PQ中點(diǎn)垂直于x軸的直線分別交C1、C2M、N,問是否存在實(shí)數(shù)b,使得C1M處的切線與C2N處的切線平行?說明你的理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案