(I)解:由平面ABCD.BC平面ABCD.得. 由.得. 又.則平面PDC--------2分 所以為直線PB與平面PDC所成的角 令.則..可求出.------3分 由平面PDC.PC平面PDC.得. 在中.由得 即直線PB與平面PDC所成的角為--------------4分 : 取PC中點(diǎn)E.連DE.則. 由BC平面PDC.BC平面PBC 得平面PDC平面PBC. 則DE平面PBC.----------------------5分 作于F.連DF 由三垂線定理.得 則為二面角D-PB-C的平面角-------------7分 在中.求得 在中.求得 在中. 即二面角D-PB-C大小的正切值為------------8分 解法(二): 由平面ABCD.PD平面PDB 得平面平面ABCD 作于H 則平面PDB----------------------5分 作于F.連CF 由三垂線定理得 則為二面角D-PB-C的平面角------------7分 在等腰中.求出斜邊上的中線 在中.求出.可進(jìn)一步求出斜邊上的高 在中.求出 即二面角D-PB-C大小的正切值是-------------8分 (III)證:取PB中點(diǎn)G.連AG和EG 由三角形中位線定理得 由已知.AD//BC. 則四邊形AGED為平行四邊形 ------------------------10分 由.已證出平面PBC 平面PBC 又平面PAB 平面PAB平面PBC-------------------12分 (IV)證:取PB中點(diǎn)G.連AG和EG 由三角形中位線定理得 由已知.AD//BC. 則四邊形AGED為平行四邊形 ------------------------10分 又平面PAB.DE平面PAB 平面PAB--------------------12分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (ⅰ)用零件的編號(hào)列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>

(本小題滿分12分)

有編號(hào)為,,…的10個(gè)零件,測(cè)量其直徑(單位:cm),得到下面數(shù)據(jù):


其中直徑在區(qū)間[1.48,1.52]內(nèi)的零件為一等品。

(Ⅰ)從上述10個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(Ⅱ)從一等品零件中,隨機(jī)抽取2個(gè).

     (。┯昧慵木幪(hào)列出所有可能的抽取結(jié)果;

     (ⅱ)求這2個(gè)零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

查看答案和解析>>


同步練習(xí)冊(cè)答案