(八)二面角 例8 如圖8(1).平面四邊形ABCD中.AB=BC=CD=a,∠B=90°,∠C=135°,沿對(duì) 角線AC將四邊形折成直二面角 圖8(1) (1)求證:平面ABD⊥平面BCD, (2)求平面ABD與平面ACD所成的角, (3)求C到平面ABD的距離. 證明 (1)因B-AC-D是直二面角.CD⊥AC. 故 CD⊥平面ABC.CD⊥AB.AB⊥BC AB⊥平面BCD.AB平面ABD. 所以 平面ABD⊥平面BDC. 解 設(shè)M是AC的中點(diǎn).則BC⊥AC.BM⊥平面ACD.作BN⊥AD.則MN⊥AD.∠BNM為二面角B-AD-C的平面角.MN=AM·sin∠CAD=a·=.MB=a.在Rt△BMN中.tg∠BNM==, 則 二面角B-AD-C是60°的二面角. 知.平面ABD⊥平面BCD. 作CH⊥BD.則CH⊥平面ABD. CH=a.故C到平面ABD的距離為a. 查看更多

 

題目列表(包括答案和解析)


同步練習(xí)冊(cè)答案