12.已知函數(shù)f(x)對(duì)定義域中的任意兩個(gè)值x1, x2(x1¹x2)都有f(x1)+f(x2)>2f()下列函數(shù)①y=x2-x ②y=()x ③y= -log2(-x) ④y=|tanx|中可以為函數(shù)f A.①③ B.②④ C.①④ D.②③ 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x

(Ⅰ)求函數(shù)g(x)在區(qū)間(0,e]上的值域;

(Ⅱ)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,my2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中總能使得F(x1)-f(x2)=(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時(shí),f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設(shè)直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:
①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個(gè)實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)數(shù)學(xué)公式是否為各自定義域上的C函數(shù),并說(shuō)明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a0=0,am=2m.記Sf=a1+a2+…+am對(duì)于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>

設(shè)f(x)是定義在區(qū)間D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及D中的任意兩個(gè)實(shí)數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù)是否為各自定義域上的C函數(shù),并說(shuō)明理由;
(Ⅱ)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)an=fn,n=0,1,2,…,m,且a=0,am=2m.記Sf=a1+a2+…+am對(duì)于滿足條件的任意函數(shù)f(x),試求Sf的最大值;
(Ⅲ)若g(x)是定義域?yàn)镽的函數(shù),且最小正周期為T,試證明g(x)不是R上的C函數(shù).

查看答案和解析>>

已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=
2x3

(1)求函數(shù)y=f(x)的最小值m(a)及g(x)的值域;
(2)若對(duì)任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案