已知x.y∈R.且x+2y≥1.則式u=x2+y2+4x-2y的最小值為 ------( ) (A)-3 24 (D)- 查看更多

 

題目列表(包括答案和解析)

已知x,y∈R+,且x+y=2,求
1
x
+
2
y
的最小值;給出如下解法:由x+y=2得2≥2
xy
①,即
1
xy
≥1
②,又
1
x
+
2
y
≥2
2
xy
③,由②③可得
1
x
+
2
y
≥2
2
,故所求最小值為2
2
.請(qǐng)判斷上述解答是否正確
不正確
不正確
,理由
①和③不等式不能同時(shí)取等號(hào).
①和③不等式不能同時(shí)取等號(hào).

查看答案和解析>>

已知x,y∈R,且
x≥1
x-y+1≥0
2x-y-2≤0
3x+2y
x
的最大值是(  )

查看答案和解析>>

15、用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.

查看答案和解析>>

已知x,y∈R,且x+2y≥1,則二次函數(shù)式u=x2+y2+4x-2y的最小值為.( 。

查看答案和解析>>

已知x,y∈R+,且x+y>2,求證:
1+x
y
1+y
x
中至少有一個(gè)小于2.

查看答案和解析>>


同步練習(xí)冊(cè)答案