題目列表(包括答案和解析)
(本小題14分)
設(shè)函數(shù)y=f(x)的定義域為(0,+∞),且在(0,+∞)上單調(diào)遞增,若對任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數(shù)列{an}滿足:a1=f(1)+1,
(1)求數(shù)列{an}的通項公式,并求Sn關(guān)于n的表達式;
(2)設(shè)函數(shù)g(x)對任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項數(shù)列{bn}滿足:,Tn為數(shù)列{bn}的前n項和,試比較4Sn與Tn的大小。
(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實數(shù)根,若對于定義域中任意的、,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com