21.橢圓G:的兩個焦點為F1.F2.短軸兩端點B1.B2.已知F1.F2.B1.B2四點共圓.且點N(0.3)到橢圓上的點最遠距離為 (1)求此時橢圓G的方程, 的直線m與橢圓G相交于不同的兩點E.F.Q為EF的中點.問E.F兩點能否關于過點P(0.).Q的直線對稱?若能.求出k的取值范圍,若不能.請說明理由. 查看更多

 

題目列表(包括答案和解析)

橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1、F2、B1、B2四點共圓 ,且點N(0,3)到橢圓上的點的最遠距離為

(1)求此時橢圓G的方程;

(2)設斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關于過點的直線對稱?若能,求出k的取值范圍;若不能,請說明理由。

查看答案和解析>>

橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知F1F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠距離為

(1)求此時橢圓G的方程;

(2)設斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點EF,Q為EF的中點,問E、F兩點能否關于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

(本題滿分14分)

橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知

F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠距離為

  (1)求此時橢圓G的方程;

  (2)設斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.

查看答案和解析>>

如圖,已知橢圓(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為|OF1|.
(1)求a,b滿足的關系式;
(2)當點M在橢圓上變化時,求證:∠F1MF2的最大值為;
(3)設圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關系式;
(2)當點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2
;
(3)設圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>


同步練習冊答案