3.如果直線與圓C:有2個不同的交點.那么點P(a.b)與圓 C的位置關系是 A.在圓內 B.在圓上 C.在圓外 D.不確定 查看更多

 

題目列表(包括答案和解析)

設橢圓C:數(shù)學公式(a>b>0)的一個頂點坐標為A(數(shù)學公式),且其右焦點到直線數(shù)學公式的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(數(shù)學公式),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

設橢圓C:數(shù)學公式(a>b>0)的一個頂點坐標為A(數(shù)學公式),且其右焦點到直線數(shù)學公式的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(數(shù)學公式),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經(jīng)驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

設橢圓C:(a>b>0)的一個頂點坐標為A(),且其右焦點到直線的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

設橢圓C:(a>b>0)的一個頂點坐標為A(),且其右焦點到直線的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經(jīng)驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>


同步練習冊答案