2008年高考電腦閱卷給2009年作文復(fù)習(xí)帶來的啟示
內(nèi)容提要:電腦閱卷與人工閱卷是不同的。本文從電腦閱卷的特點(diǎn)出發(fā),探討了電腦閱卷給作文教學(xué)帶來的幾點(diǎn)啟發(fā)。本文認(rèn)為消除學(xué)生的僥幸心理與怨天尤人的想法,選好題目,開好頭,書寫要工整美觀是應(yīng)對高考作文比較有效的途徑。
關(guān)鍵詞:高考電腦閱卷;作文教學(xué)
本人參加了2008年的高考閱卷,一個(gè)星期的閱卷工作令人難忘,用兩個(gè)字形容:累、緊。“累”的是浙江省第一次采用電腦閱卷,許多人因?yàn)橛?jì)算機(jī)的長時(shí)間輻射,臉上長了小痘痘,又癢又通,且感覺困乏得很。“緊”的是因第一次上電腦閱卷,許多規(guī)則讓人一時(shí)間適應(yīng)不了,故時(shí)間上被耽誤了。因?yàn)檫@一星期的電腦閱卷經(jīng)歷,本人對老師平時(shí)的作文教學(xué)就有了幾點(diǎn)淺顯的思考。
2009年甘肅省第一次高考診斷試卷
文 綜
說明:
本試卷分第1卷(選擇題)和第Ⅱ卷(綜合題),總分300分,考試時(shí)間150分鐘,請將選擇題的答案填在答題卡中?荚嚱Y(jié)束后,請將第Ⅱ卷交回。
第1卷 (選擇題共140分)
2009年甘肅省第一次高考診斷試卷
理 綜
考生注意:
本試卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分300分,考試時(shí)間150分鐘。
請將第I卷各題符合題目要求的選項(xiàng)寫在第Ⅱ卷前面的表格里。
題號
第I卷
第Ⅱ卷
總分
得分
22
23
24
25
26
27
28
29
30
31
以下數(shù)據(jù)可供參考:
相對原子質(zhì)量(原子量):H―
第I卷 (選擇題共21題,每小題6分,共126分)
數(shù)學(xué)20分鐘專題突破27
函數(shù)與方程的思想
一.選擇題
1.若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有( )
A. B.
C. D.
2.于x的方程的兩根滿足,則k的取值范圍是( )
A. B. C. D.
3.,動(dòng)點(diǎn)在正方體的對角線上.過點(diǎn)作垂直于平面的直線,與正方體表面相交于.設(shè),,則函數(shù)的圖象大致是( )
二.填空題
1.設(shè),若僅有一個(gè)常數(shù)c使得對于任意的,都有滿足方程,這時(shí),的取值的集合為 。
2.,若關(guān)于的方程有實(shí)根,則的取值范圍是 .
3.當(dāng)時(shí),不等式恒成立,則的取值范圍是
三.解答題
(Ⅰ)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;
(Ⅱ)設(shè)過定點(diǎn),的直線與橢圓交于兩不同的點(diǎn)、,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
答案:
一.擇題題
1. 解:因?yàn)?sub>,用替換得: 因?yàn)楹瘮?shù)分別是上的奇函數(shù)、偶函數(shù),所以,又
解得:,而單調(diào)遞增且,∴大于等于0,而,故選。
2. 解:設(shè)函數(shù),∵關(guān)于x的方程的兩根滿足,∴即∴,故選擇。
3. 解:設(shè)正方體的棱長為,由圖形的對稱性知點(diǎn)始終是的中點(diǎn),
而且隨著點(diǎn)從點(diǎn)向的中點(diǎn)滑動(dòng),值逐漸增大到最大,再由中
點(diǎn)向點(diǎn)滑動(dòng),而逐漸變小,排除,把向平面內(nèi)正投
影得,則=,由于,
∴,所以當(dāng)時(shí),為一次函數(shù),故選
二.填空題
1. 解:由已知,得(其中),函數(shù)為反比例函數(shù),在()上為單調(diào)遞減,所以當(dāng)時(shí),又因?yàn)閷τ谌我獾?sub>,都有,所以,因?yàn)橛星抑挥幸粋(gè)常數(shù)符合題意,所以,解得,所以的取值的集合為。
2. 解:方程即,利用絕對值的幾何意義,得,可得實(shí)數(shù)的取值范圍為
3. 解:構(gòu)造函數(shù):.由于當(dāng)時(shí),不等式恒成立,等價(jià)于在區(qū)間上函數(shù)的圖象位于軸下方,由于函數(shù)的圖象是開口向上的拋物線,故只需即,解得.
.
三.解答題
解:(Ⅰ)解法一:由橢圓方程知
所以 ,設(shè)
則
又 ∴
,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值
當(dāng),即點(diǎn)為橢圓長軸端點(diǎn)時(shí),有最大值.
解法二:易知,所以,設(shè)
則
(以下同解法一)
(Ⅱ)顯然當(dāng)直線的斜率不存在即時(shí),不滿足題設(shè)條件
聯(lián)立 得
即
∴ ,
由
即 解得 ①
又為銳角
∴
∴
∴
∴ ②
綜①、②可知
數(shù)學(xué)20分鐘專題突破26
分類整合的思想方法
一.選擇題
1.至少有一個(gè)正的實(shí)根的充要條件是 ( )
A. B. C. D.
二.填空題
1.設(shè)函數(shù),若對于任意的都有成立,則實(shí)數(shù)的值為
2.函數(shù)在上有最大值,則實(shí)數(shù)的取值范圍為
三.解答題
1.設(shè)且,比較與的大。
(2008南通四縣市)先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為.
(1)求直線與圓相切的概率;
(2)將,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
答案:
一.選擇題
1. 解:當(dāng)時(shí),方程為,滿足。當(dāng)時(shí),至少有一個(gè)正的實(shí)根,設(shè),當(dāng)時(shí),∵,∴一定有一個(gè)正的實(shí)根;當(dāng)時(shí),∵,∴即,綜上,故選B
二.填空題
1.解:若,則不論取何值,≥0顯然成立;當(dāng) 即時(shí),≥0可化為:
設(shè),則, 所以 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,因此,從而≥4;
在區(qū)間上單調(diào)遞增,因此,從而≤4,綜上=4
答案:4
數(shù)學(xué)20分鐘專題突破25
必然與或然的思想方法
一.選擇題
1.如圖所示,墻上掛有一邊長為的正方形木板,它的四個(gè)角的空白部分都是以正
|