1. 圓Γ1和圓Γ2相交于點(diǎn)MN。設(shè)l是圓Γ1和圓Γ2的兩條公切線(xiàn)中距離M較近的那條公切線(xiàn)。l與圓Γ1相切于點(diǎn)A,與圓Γ2相切于點(diǎn)B。設(shè)經(jīng)過(guò)點(diǎn)M且與l平行的直線(xiàn)與圓Γ1還相交于點(diǎn)C,與圓Γ2還相交于點(diǎn)D。直線(xiàn)CADB相交于點(diǎn)E;直線(xiàn)ANCD相交于點(diǎn)P;直線(xiàn)BNCD相交于點(diǎn)Q。

求證:EP=EQ。

2. 設(shè)a,b,c是正實(shí)數(shù),且滿(mǎn)足abc=1。求證:

(a- 1 + 1/b)(b - 1 + 1/c)(c - 1 + 1/a) ≤ 1。

3. 設(shè)n≥2為正整數(shù)。開(kāi)始時(shí),在一條直線(xiàn)上有n只跳蚤,且它們不全在同一點(diǎn)。
對(duì)任意給定的一個(gè)正實(shí)數(shù)λ,可以定義如下的一種“移動(dòng)”:

試確定所有可能的正實(shí)數(shù)λ, 使得對(duì)于直線(xiàn)上任意給定的點(diǎn)M以及這n只跳蚤的任意初始位置,總能夠經(jīng)過(guò)有限多個(gè)移動(dòng)之后令所有的跳蚤都位于M的右邊。

4. 一位魔術(shù)師有一百?gòu)埧ㄆ謩e寫(xiě)有數(shù)字1100. 他把這一百?gòu)埧ㄆ湃肴齻(gè)盒子里,一個(gè)盒子是紅色的,一個(gè)是白色的,一個(gè)是藍(lán)色的。 每個(gè)盒子里至少都放入了一張卡片。 一位觀(guān)眾從三個(gè)盒子中挑出兩個(gè),再?gòu)倪@兩個(gè)盒子里各選取一張卡片, 然后宣布這兩張卡片上的數(shù)字之和。知道這個(gè)和之后,魔術(shù)師便能夠指出哪一個(gè)是沒(méi)有從中選取卡片的盒子。 

問(wèn)共有多少種放卡片的方法,使得魔術(shù)總能夠成功?(兩種方法被認(rèn)為是不同的,如果至少有一張卡片被放入不同顏色的盒子)

5. 確定是否存在滿(mǎn)足下列條件的正整數(shù)nn恰好能夠被2000個(gè)互不相同的質(zhì)數(shù)整除,且2n+1能夠被n整除。

6. 設(shè)AH1,BH2,CH3是銳角三角形ABC的三條高線(xiàn)。 三角形ABC的內(nèi)切圓與邊BC, CA, AB分別相切于點(diǎn)T1, T2, T3,設(shè)直線(xiàn)l1,l2,l3分別是直線(xiàn)H2H3, H3H1, H1H2關(guān)于直線(xiàn)T2T3, T3 T1, T1T2的對(duì)稱(chēng)直線(xiàn)。
求證:l1,l2,l3所確定的三角形,其頂點(diǎn)都在三角形ABC的內(nèi)切圓上。

 


同步練習(xí)冊(cè)答案