1.  已知x1 >= x2 >= ... >= xn, 以及y1 >= y2 >= ... >= yn 都是實數(shù),求證 若z1 ,z2 ,...,zn 是yi 的任意排列則有

∑(xi-yi)2   <=  ∑(xi-zi)2

上式中左右兩邊的求和都是i從1到n。

2.  令a1 < a2 < a3 < ... 是一遞增正整數(shù)序列,求證對所有i>=1,存在無窮多個 an 可以寫成  an = rai + saj的形式,其中r,s是正實數(shù)且j > i。

3.  任意三角形ABC的邊上,向外作三角形ABR,BCP,CAQ,使角CBP、角CAQ都是45度,角BCP、角ACQ都是30度,角ABR、角BAR都是15度。求證角QRP是直角并且QR=RP。

4. 令A(yù)是將44444444寫成十進制數(shù)字時的各位數(shù)字之和,令B時A的各位數(shù)字之和,求B的各位數(shù)字之和。

5.  判定并證明能否在單位圓上找到1975個點使得任意兩點間的距離為有理數(shù)。

6.  找出所有兩個變量的多項式P(x, y)使其滿足:

P(y + z, x) + P(z + x, y) + P(x + y, z) = 0;

 


同步練習冊答案