2005年寧德市初中畢業(yè)、升學(xué)考試
(1)本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可參照本答案的評(píng)分標(biāo)準(zhǔn)的精神進(jìn)行評(píng)分。
(2)對(duì)解答題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的立意,可酌情給分,但原則上不超過(guò)后面應(yīng)得的分?jǐn)?shù)的一半;如果有較嚴(yán)重的錯(cuò)誤,就不給分。
(3)解答右端所注分?jǐn)?shù)表示考生正確作完該步應(yīng)得的累加分?jǐn)?shù)。
(4)評(píng)分只給整數(shù)分,選擇題和填空題均不給中間分。
一.填空題(每小題3分,共36分)
1、3;2、(x-1)(x+1);3、135º;4、3.12×107;5、1,2;6、8;7、I=;8、1;9、70;10、8;11、只要與點(diǎn)D有關(guān)的正確結(jié)論都給分,例如:DO=OE、DC=EB、△ODB≌△OEC、△ADC≌△AEB、ÐODB=ÐCEO、ÐDOB=ÐEOC、ÐCDA=ÐAEB、=、=等;12、27π。
二.選擇題(每小題4分,共24分)
13、B;14、A;15、C;16、D;17、A;18、C
三.簡(jiǎn)答題(本小題滿(mǎn)分8分)
19、(本題滿(mǎn)分8分)
解:原式=-8+1+2………………6分
=-5………………………………8分
20.(本題滿(mǎn)分8分)
解法一:把(x+y)=9代入②得
3×9+2x=33
∴x=3………………4分
把x=3代入①得y=6……………7分
∴原方程組的解是…………8分
解法二:由①得y=9-x…………③…………1分
把③代入②得 3(x+9-x)+2x=33
∴x=3………………4分
把x=3代入③得y=6………………7分
∴原方程組的解是……………8分
21.(本題滿(mǎn)分10分)
解法一:我選擇證明△EBN≌△FDM………………3分
證明:□ABCD中,AB∥CD,ÐB=ÐD,AB=CD………………6分
∴ÐE=ÐF………………7分
又∵AE=CF
∴BE=DF………………8分
∴△EBN≌△FDM………………10分
解法二:我選擇證明△EAM≌△FCN………………3分
證明:□ABCD中,AB∥CD,ÐDAB=ÐBCD………………5分
∴ÐE=ÐF ,ÐEAM=ÐFCN………………7分
又∵AE=CF………………8分
∴△EAM≌△FCN………………10分
22.(本題滿(mǎn)分10分)
(1)符合要求即得5分。(其中作圖4分,正確標(biāo)出兩組對(duì)稱(chēng)點(diǎn)得1分)
(2)所找出點(diǎn)的坐標(biāo)寫(xiě)正確得4分
P¢9(b,a)得1分
23.(本題滿(mǎn)分10分)
解:(1)=7760(人)
∴該縣2004年共有初中畢業(yè)生7760人。………………3分
(2)7760×13.1%≈1017(人),7760×11.9%≈923(人)(1016人與924人也正確,若答案為小數(shù)總扣1分)
∴就讀職業(yè)高中的畢業(yè)生數(shù)為1017人,賦閑在家的畢業(yè)生有923人!7分
(3)只要言之有理均可得3分
如:賦閑在家學(xué)生比例大,而職高發(fā)展不足,建議發(fā)展職高以吸納賦閑在家的學(xué)生。
又如:在普通高中,達(dá)標(biāo)高中所占比例偏低,建議把更多的非達(dá)標(biāo)高中發(fā)展為達(dá)標(biāo)高中…………10分
24.(本題滿(mǎn)分10分)
解:(1)在Rt△ADB中,AB=30m,ÐABC=65º,sinÐABC=……2分
∴AD=AB?sinÐABC
=30×sin65º
≈27.2(m)
答:AD等于27.2米!4分
(2)在Rt△ADB中
cosÐABD=
∴DB=AB?cosÐABD…………5分
=30×cos65º
≈12.7(m)………………6分
連結(jié)BE、過(guò)E作EN^BC于N
∵AE∥BC
∴四邊形AEND為矩形
NE=AD≈27.2
在Rt△ENB中,由已知ÐEBN≤45º
當(dāng)EBN=45º時(shí)
BN=EN=27.2………………8分
∴AE=ND=BN-BD=14.5(m)
答:AE至少是14.5分。………………10分
25.(本題滿(mǎn)分10分)
(1)證法一:連結(jié)BC
∵AB為⊙O的直徑
∴ÐACB=90º…………2分
又∵DC切⊙O于C點(diǎn)
∴ÐDCA=ÐB
∵DC^PE
∴Rt△ADC∽R(shí)t△ACB………………4分
∴ÐDAC=ÐCAB………………5分
(2)解法一:在Rt△ADC中,AD=2,DC=4
∴AC==2…………7分
由(1)得Rt△ADC∽R(shí)t△ACB………………7分
∴=
即AB===10
∴⊙O的直徑為10………………10分
(1)證法二:連結(jié)OC
∵OA=OC
∵ÐACO=ÐCAO…………1分
又∵CD切⊙O于C點(diǎn)
∴OC^DC………………2分
∵CD^PA
∴OC∥PA………………3分
∴ÐACO=ÐDAC
∴ÐDAC=ÐCAO…………5分
(2)解法二:過(guò)點(diǎn)O作OM^AE于點(diǎn)M,連結(jié)OC
∵DC切⊙O于C點(diǎn)
∴OC^DC
又∵DC^PA
∴四邊形OCDM為矩形
∴OM=DC=4………………6分
又DC2=DA?DE
∴DE=8,∴AE=6, ∴AM=3………………8分
在Rt△AMO中
OA==5
即⊙O的直徑為10!10分
(其余解法相應(yīng)給分)
26.(本題滿(mǎn)分12分)
(1)設(shè)甲連續(xù)劇一周內(nèi)播x集,則乙連續(xù)劇播(7-x)集………………1分
根據(jù)題意得
y=20x+15(7-x)
∴y=5x+105…………5分
(2)50x+35(7-x)≤300………………7分
解得x≤3………………8分
又y=5x+105的函數(shù)值隨著x的增大而增大!9分
又∵x為自然數(shù)
當(dāng)x=3時(shí),y有最大值3×5+105=120(萬(wàn)人次)
7-x=4…………11分
答:電視臺(tái)每周應(yīng)播出甲連續(xù)劇3集,播放乙連續(xù)劇4集,才能使每周收視觀眾的人次總和最大,這個(gè)最大值是120萬(wàn)人次!12分
27.(本題滿(mǎn)分12分)
(1)在梯形ABCD中,AD∥BC、ÐB=90º過(guò)D作DE^BC于E點(diǎn)
∴AB∥DE
∴四邊形ABED為矩形………………1分
DE=AB=12cm
在Rt△DEC中,DE=12cm,DC=13cm
∴EC=5cm
∴AD=BE=BC=EC=3cm………………2分
點(diǎn)P從出發(fā)到點(diǎn)C共需=8(秒)
點(diǎn)Q從出發(fā)到點(diǎn)C共需=89少)……3分
又∵t≥0
∴o≤t≤8…………4分
(2)當(dāng)t=1.5(秒)時(shí),AP3,即P運(yùn)動(dòng)到D點(diǎn)…………5分
∴當(dāng)1.5≤t≤8時(shí),點(diǎn)P在DC邊上
∴PC=16-2t
過(guò)點(diǎn)P作PM^BC于M
∴PM∥DE
∴=即=
∴PM=(16-2t)…………7分
又∵BQ=t
∴y=BQ?PM
=t? (16-2t)
=-t2+t………………3分
(3)當(dāng)0≤t≤1.5時(shí),△PQB的面積隨著t的增大而增大;
當(dāng)1.5<t≤4時(shí),△PQB的面積隨著t的增大而(繼續(xù))增大;
當(dāng)4<t≤8時(shí),△PQB的面積隨著t的增大而減小!12分
注:①上述不等式中,“1.5<t≤4”、“4<t≤8”寫(xiě)成“1.5≤t≤4”、“4≤t≤
8”也得分。
②若學(xué)生答:當(dāng)點(diǎn)P在AD上運(yùn)動(dòng)時(shí),△PQB的面積先隨著t的增大而增大,當(dāng)點(diǎn)P在DC上運(yùn)動(dòng)時(shí),△PQB的面積先隨著t的增大而(繼續(xù))增大,之后又隨著t的增大而減小。給2分
③若學(xué)生答:△PQB的面積先隨著t的增大而減小給1分。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com