江西省南昌市2008―2009學(xué)年度高三第二輪復(fù)習(xí)測(cè)試(六)

數(shù) 學(xué) 試 題

 

一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)

1.(理)化簡(jiǎn)得                                                                               (    )

試題詳情

       A.               B.                C.                  D.

試題詳情

   (文)若集合為                                  (    )

       A.{1,2,3,4,5,6}                          B.{1,4,5,6}

試題詳情

       C.{2,3}                                               D.

試題詳情

2.已知α、β均為銳角,且等于                      (    )

試題詳情

       A.1                        B.                   C.                    D.

試題詳情

3.若互不相等的實(shí)數(shù)a、b、c成等差數(shù)列,c、a、b成等比數(shù)列,且則a等于                         (    )

       A.4                        B.2                        C.―2                     D.―4

試題詳情

4.已知函數(shù)軸負(fù)方向平移1個(gè)單位后,恰好與的解析式是                                     (    )

試題詳情

       A.                                    B.

試題詳情

       C.                                    D.

試題詳情

5.若不等式的最小值是                  (    )

試題詳情

       A.                   B.―2                     C.―3                     D.0

試題詳情

6.已知的夾角為                (    )

試題詳情

       A.                     B.                      C.                      D.

試題詳情

7.(理)設(shè)的值為                                                 (    )

       A.1                        B.2                        C.4                        D.0

試題詳情

  (文)若則                                                                        (    )

試題詳情

       A.               B.  C.     D.

試題詳情

8.(理)若函數(shù)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍                                                                     (    )

試題詳情

       A.               B.             C.         D.

試題詳情

   (文)函數(shù)是                                                                (    )

       A.奇函數(shù)                                               B.偶函數(shù)              

       C.既是奇函數(shù)又是偶函數(shù)                      D.非奇非偶函數(shù)

試題詳情

       ①P是△A1BD的重心

       ②AP也垂直于面CB1D1

       ③AP的延長(zhǎng)線必通過(guò)點(diǎn)C1

       ④AP與面AA1D1D所成角為45°

    其中,正確的命題是(    )

       A.①②                   B.①②③              

       C.②③④               D.①③④

 

 

 

試題詳情

10.將4個(gè)不相同的球放入編號(hào)為1、2、3的3個(gè)盒子中,當(dāng)某盒子中球的個(gè)數(shù)等于該盒子的編號(hào)時(shí)稱(chēng)為一個(gè)匹配,則恰好有2個(gè)匹配的概率為                                                               (    )

試題詳情

       A.                    B.                     C.                     D.

試題詳情

11.函數(shù),在區(qū)間[1,2]上,處分別取得最小值和最大值,則的值可能是                      (    )

試題詳情

       A.                                 B.

試題詳情

       C.                                   D.

試題詳情

12.設(shè)的最大值為                                                                                               (    )

       A.16                      B.17                      C.18                      D.20

 

試題詳情

試題詳情

13.(理)不等式的解集是             。

試題詳情

   (文)不等式的解集是            。

試題詳情

14.如圖,正方體AC1的棱長(zhǎng)為2,M在AA1上,N在B1D1上,

且AM=D1N,則四面體AMB1N體積的最大值為         。

試題詳情

15.(理)如果P1,P2,…,P8是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為,F(xiàn)是拋物線的焦點(diǎn),若=        。

試題詳情

   (文)過(guò)拋物線上點(diǎn)M的切線的斜率為l,則此切線與x軸交點(diǎn)的坐標(biāo)為    。

試題詳情

16.命題

試題詳情

    命題

    則復(fù)合命題①“p或q”,②“p且q”,③“非p”中真命題是            。

 

試題詳情

三、解答題(本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)

17.(本題滿分12分)

試題詳情

已知A,B是△ABC的兩個(gè)內(nèi)角,是互相垂直的單位向量),若

試題詳情

   (1)試問(wèn)是否為定值,若是定值,請(qǐng)求出,否則請(qǐng)說(shuō)明理由;

試題詳情

   (2)求的最大值,并判斷此時(shí)三角形的形狀。

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分12分)

   (理)袋中有編號(hào)為1,2,3,4的四個(gè)小球,每次從袋中取出一個(gè)球,然后加入一個(gè)新的沒(méi)有編號(hào)的球,共取球四次,用ξ表示經(jīng)過(guò)四次取球后袋中剩余的帶有編號(hào)的球的個(gè)數(shù)。試求:

   (1)ξ的分布列;

   (2)ξ的數(shù)學(xué)期望Eξ。

   (文)袋中有編號(hào)為1,2,3,4的四個(gè)小球,每次從袋中取出一個(gè)球,然后加入一個(gè)新的沒(méi)有編號(hào)的球,共取球四次。試求:

   (1)經(jīng)過(guò)四次取球后袋中沒(méi)有帶有編號(hào)的球的概率;

   (2)經(jīng)過(guò)四次取球后袋中至少有2個(gè)帶有編號(hào)的球的概率。

 

 

 

 

 

 

 

試題詳情

19.(本小題滿分12分)

試題詳情

    已知函數(shù)取極值。

   (1)求實(shí)數(shù)k的值;

試題詳情

   (2)求函數(shù)的單調(diào)區(qū)間;

試題詳情

   (3)若的取值范圍。

 

 

 

 

 

 

 

試題詳情

20.(本小題滿分12分)

試題詳情

如圖,在直三棱柱ABC―A1B1C1中,AB=AC=,BC=2,AA1=4,P是側(cè)棱CC1上一點(diǎn)。

   (1)若P是側(cè)棱CC1的中點(diǎn),求異面直線PB1與AC所成的角;

   (2)若P是側(cè)棱CC1的中點(diǎn),求B1到面PAB的距離;

   (3)試確定P點(diǎn)在側(cè)棱CC1上的位置,使平面PAB⊥平面PA1B1。

試題詳情

 

 

 

 

 

 

 

 

試題詳情

21.(本題滿分12分)

試題詳情

   (理)中心在原點(diǎn)的雙曲線C1的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)F重合,拋物線C2的準(zhǔn)線l與雙曲線C1的一個(gè)交點(diǎn)為A,且|AF|=5。

   (1)求雙曲線C1的方程;

試題詳情

   (2)若過(guò)點(diǎn)的直線m與雙曲線C1相交于不同兩點(diǎn)M,N,且

        ①求直線m的斜率k的變化范圍;

試題詳情

②當(dāng)直線m的斜率不為0時(shí),問(wèn)在直線

試題詳情

若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

試題詳情

   (文)P是雙曲線上的動(dòng)點(diǎn),若P到右焦點(diǎn)F的最短距離為a。

   (1)求雙曲線方程;

   (2)過(guò)焦點(diǎn)F作與漸近線垂直的直線l交雙曲線于M,N兩點(diǎn),求|FM|?|FN|的值。

試題詳情

 

 

 

 

 

 

 

 

 

 

 

試題詳情

22.(本題滿分14分)

試題詳情

設(shè)向量上的最小值與最大值的和為

試題詳情

   (1)求證:

試題詳情

   (2)求的表達(dá)式;

試題詳情

   (3)中,是否存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立?證明你的結(jié)論。

 

試題詳情

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因?yàn)?sub>

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

   

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求。…………1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

  • 解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1,

    以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

       (2)是平面PAB的一個(gè)法向量,

       ………………5分

       ………………6分

      ………………8分

       (3)設(shè)P點(diǎn)坐標(biāo)為(),則

    設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

        令

        同理可求得平面PA1B1的一個(gè)法向量   ………………10分

        要使平面PAB⊥平面PA1B1,只需

          ………………11分

        解得: …………12分

    21.(理)解:(1)由條件得

       

       (2)①設(shè)直線m ……5分

       

        ②不妨設(shè)M,N的坐標(biāo)分別為

    …………………8分

    因直線m的斜率不為零,故

       (文)解:(1)設(shè)  …………2分

       

        故所求雙曲線方程為:

       (2)設(shè),

       

        由焦點(diǎn)半徑,  ………………8分

       

    22.(1)證明:

        所以在[0,1]上為增函數(shù),   ………………3分

       (2)解:由

       

       (3)解:由(1)與(2)得 …………9分

        設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

           ………………10分

       

        ,   ………………11分

        當(dāng),   ………………12分

        當(dāng)    ………………13分

        所在存在正整數(shù)

        都有成立.   ………………14分

     

     

     

     


    同步練習(xí)冊(cè)答案