本資料來源于《七彩教育網》http://www.7caiedu.cn
內蒙古赤峰二中2009屆高三3月統(tǒng)一考試
數學(理)
本試卷分選擇題和非選擇題兩部分。滿分150分,考試時間120分鐘.
第Ⅰ卷(選擇題,共60分)
一 。選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.
A.第一象限 B.第二象限 C.第三象限 D.第四象限
A.充分不必要條件 B.必要不充分條件 C.充要條件 D.不充分也不必要條件
3 .在各項均為正數的等比數列{}中, 、是方程的兩個根,則的值為
5.已知f(sinx+cosx)=tanx(x[0,π]),則f ()等于
6.一臺計算機裝置的示意圖如圖所示,其中、表示數據入口,C是計算結果的出口.計算過程是由、分別輸入正整數和,經過計算機運算后由C輸出的結果為正整數.此裝置滿足下列三個性質:①;②;③.現從輸入5、輸入6,則輸出結果的值為
A.20
B.
7.棱長為3的正三棱柱內接于球O中,則球O的表面積為
8.已知A、B,以AB為一腰作使∠DAB=直角梯形ABCD,且,CD中點的縱坐標為1.若橢圓以A、B為焦點且經過點D,則此橢圓的方程為
9.已知O為直角坐標系原點,P、Q的坐標滿足不等式組,則的最小值為( )
10 .袋中裝有編號從1、2、3、4的四個球,四個人從中各取一個球,則甲不取1號球,乙不取2號球,丙不取3號球,丁不取4號球的概率
11.如圖所示,O、A、B是平面上三點,向量在平面 AOB上,P為線段AB的垂直平分線上任一點,
12.已知函數的定義域為,部分對應值如下表,為的導函數,函數的圖像如圖所示.若兩正數滿足,則的取值范圍是
-2
0
4
1
-1
1
第Ⅱ卷(非選擇題,共90分)
二、填空題:本大題共4小題,每小題5分,共20分。請將答案直接填在題中橫線上。
16.給出下列四個結論:
三、解答題:本大題共6個小題.滿分70分.解答應寫出必要的文字說明、證明過程或演算步驟.請將解答過程寫在答題紙的相應位置.
(1)求證:BC⊥平面PAC;
(2)求二面角D-PC-A的大小的正切值;
(3)求點B到平面PCD的距離。
19.(本小題12分)袋中有形狀大小完全相同的8個小球,其中紅球5個,白球3個。某人逐個從袋中取球,第一次取出一個小球,記下顏色后放回袋中;第二次取出一個小球,記下顏色后,不放回袋中,第三次取出一個小球,記下顏色后,放回袋中,第四次取出一個小球,記下顏色后不放回袋中……,如此進行下去,直到摸完球為止。
(1)求第四次恰好摸到紅球的概率;
(2)記ξ為前三次摸到紅球的個數,寫出其分布列,并求其期望Eξ。
20.(本小題滿分12分)
一、選擇題:
1.D 2.A 3 B 4.D 5.A 6.D 7.B 8.C 9.A 10.B 11.A 12.B
二、填空題:
三、解答題:
17.解:法(1):①∵=(1+cosB,sinB)與=(0,1)所成的角為
②令AB=c,BC=a,AC=b
∵B=,∴b2=a2+c2-2accosB=a2+c2-ac=,∵a,c>0。 (6分)
∴(a+c)2≤48,∴a+c≤,∴a+b+c≤+=(當且僅當a=c時取等號)
即2cos2B+cosB-1=0,∴cosB=或cosB=-1(舍),而B∈(0,π),∴B= (4分)
(2)令AB=c,BC=a,AC=b,ΔABC的周長為,則=a+c+
18.解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC
(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1
∴ΔADC為等邊三角形,且AC=1,取AC的中點O,則DO⊥AC,又PA⊥底面ABCD,
∴PA⊥DO,∴DO⊥平面PAC,過O作OH⊥PC,垂足為H,連DH
由三垂成定理知DH⊥PC,∴∠DHO為二面角D-PC-A的平面角
∴二面角D-PC-A的大小的正切值為2。
(3)設點B到平面PCD的距離為d,又AB∥平面PCD
19.解:(1)第一和第三次取球對第四次無影響,計第四次摸紅球為事件A
①第二次摸紅球,則第四次摸球時袋中有4紅球概率為
②第二次摸白球,則第四次摸球時袋中有5紅2白,摸紅球概率為
∴P(A)=,即第四次恰好摸到紅球的概率為。(6分)(注:無文字說明扣一分)
(2)由題設可知ξ的所有可能取值為:ξ=0,1,2,3。P(ξ=0)=;
ξ
0
1
2
P
…………13分
聯(lián)立上式解得b=1,∴c=2,.∴雙曲線方程為.
(2)設C(x1,y1),D(x2,y2)設CD中點M(x0,y0),
聯(lián)立直線與雙曲線的方程得,整理得(1-3k2)x2-6kmx
(2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均為增函數,在(-2,1)上為減函數。
(i)當m>1時,f(x)在[m,m+3]上遞增。故f(x)max=f(m+3),f(x)min=f(m)
由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=
(ii)當0≤m≤1時,f(x)在[m,1]上遞減,在[1,m+3]上遞增。
∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max
又f(m+3)-f(m)=
∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=恒成立
故當0≤m≤1原式恒成立。 (8分)
綜上:存在m且m∈[0,1]合乎題意。 (9分)
假設n=k(k≥2,k∈N*)時,ak>2。則ak+1=f(ak)>f(2)=8>2
故對于一切n(n≥2,n∈N*)均有an>2成立。 (11分)
當x∈(0,2)時(x)<0,x∈(2,+∞)時,(x)>0,
而g(2)=8-8ln2>0,即當x∈[2,+∞時,g(x)≥g(2)>0恒成立。
∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。
而當n=1時,a2=8,而8lna1≤0,∴a2>8lna1顯然成立。
綜上:對一切n∈N*均有an+1>8lnan成立。
本資料由《七彩教育網》www.7caiedu.cn 提供!
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com