母子相似形的妙用

    “一母生兩子,兩子皆似母。”直角三角形斜邊上的高將原直角三角形分為兩個(gè)小直角三角形,這兩個(gè)小直角三角形都和原直角三角形相似,這種基本圖形我們不妨形象地叫做母子相似形。在母子相似形中有三個(gè)重要的結(jié)論(如圖1):

   

    其應(yīng)用十分廣泛,有些幾何命題,雖然條件中沒有給出這種基本圖形,但可以根據(jù)題目特征,構(gòu)造出母子相似形,巧妙地運(yùn)用三個(gè)結(jié)論,從而達(dá)到靈活解題的目的。下舉例說明:

    例1  如圖2,在中,AB=AC,高AD與BE交于H,,垂足為F,延長(zhǎng)AD到G,使DG=EF,M是AH的中點(diǎn)。

    求證:

    分析:依題意知,因而有諸多的直角三角形,故應(yīng)充分考慮母子相似形的應(yīng)用。

    欲證

    因

    只要證

    而BD=DE,GD=EF

    故只要證

    若將EF平移至DK,并連ME,這時(shí)只要證是母子相似形,即只要證,也就是要證,而在直角三角形BEC和HEA中,D、M分別為斜邊BC、HA的中點(diǎn),所以容易得,又易證,至此,思路理順,命題可證。

    例2  如圖3,已知⊙外切⊙于P,一條外公切線分別切兩圓于點(diǎn)M、N,A為⊙上任意一點(diǎn),AP交⊙于B,AM交BN于C,AD切⊙于D。求證:AD=AC。

    分析:AD是⊙的切線,由切割線定理,知

    如圖3,連結(jié)CP,則問題轉(zhuǎn)化為證構(gòu)成母子相似形

    即需證

    而根據(jù)題意易知,

    又因?yàn)榍悬c(diǎn)三角形PMN是直角三角形

   

   

    故證得,且有P、M、C、N四點(diǎn)共圓

    因而

    于是有為母子相似形

    即得

    所以

    于是由<1>、<2>知,命題得證。

 

 

 

 

 

 


同步練習(xí)冊(cè)答案