13.如圖所示半徑為R、r(R>r)甲、乙兩圓形軌道安置在同一豎直平面內,兩軌道之間由一條水平軌道(CD)相連,如小球從離地3R的高處A點由靜止釋放,可以滑過甲軌道,經(jīng)過CD段又滑上乙軌道后離開兩圓形軌道,小球與CD段間的動摩擦因數(shù)為μ,其余各段均光滑.為使小球進入圓形軌道并不脫離圓形軌道,試設計CD段的長度.

分析 為避免出現(xiàn)小球脫離圓形軌道而發(fā)生撞軌現(xiàn)象,一種可能是越過乙軌道的最高點,根據(jù)乙軌道最高點臨界速度求出CD的臨界值.一種可能越過乙軌道的最低點,但是越不過乙軌道圓心的等高處,根據(jù)動能定理求出CD的范圍.

解答 解:設CD的長度為x,小球在乙軌道最高點的最小速度為:$v=\sqrt{gr}$;
小球要通過乙軌道最高點,則需滿足:$mg(3R-2r)μmgx≥\frac{1}{2}m{v}_{\;}^{2}$,得:$x≤\frac{6R-5r}{2μ}$;
小球到乙軌圓心等高處之前再返回,則需滿足:mg(3R-r)-μmgx≤0;
且mg•3R-μmgx>0,得:$\frac{3R-r}{μ}≤x≤\frac{3R}{μ}$;
故:CD$≤\frac{6R-5r}{2μ}$或$\frac{3R-r}{μ}≤CD≤\frac{3R}{μ}$
答:設計CD段的長度滿足CD$≤\frac{6R-5r}{2μ}$或$\frac{3R-r}{μ}≤CD≤\frac{3R}{μ}$.

點評 本題綜合運用了動能定理和機械能守恒定律,運用兩規(guī)律解題時要合適地選擇研究的過程.為避免出現(xiàn)小球脫離圓形軌道而發(fā)生撞軌現(xiàn)象,一種可能是越過乙軌道的最高點,另一種可能越過乙軌道的最低點,但是越不過乙軌道圓心的等高處.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

3.下列說法正確的是( 。
A.彈簧振子在驅動力作用下一定發(fā)生共振
B.光纖通信是激光和光導纖維相結合的產(chǎn)物
C.火車以接近光束通過站臺時,車上乘客觀察到站在站臺上旅客變矮
D.光的偏振現(xiàn)象說明光是橫波

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.下面的各種核反應中能產(chǎn)生中子的是(  )
A.用γ光子轟擊2612Mg,生成物之一為2611Na
B.用氘核轟擊94Be,生成物之一為105B
C.用質子轟擊73Li,生成物之一為84Be
D.用α粒子轟擊73Li,生成物之一為105B

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

1.關于靜電場的電場強度和電勢,下列說法正確的是( 。
A.電場強度大的地方,電勢一定高
B.電場強度為零的地方,電勢也為零
C.隨著電場強度的大小逐漸減小,電勢也逐漸降低
D.任一點的電場強度總是指向該點電勢降落最快的方向

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

8.某同學用如圖所示的實驗裝置“研究平拋物體的運動”,描繪平拋物體運動的軌跡,求物體平拋的初速度.根據(jù)該同學的實驗過程,完成下列填空:
(1)在安裝器材時,應該使木板在豎直平面內,斜槽末端應該保持在水平方向;
(2)讓小球多次從斜槽上同一位置上自由滾下,目的是為了讓小球每次平拋的初速度相同.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

18.如圖,某小朋友在水平桌面上將三個形狀不規(guī)則的石塊成功疊放在一起.下列說法正確的是( 。
A.石塊b對a的支持力與a受到的重力是一對相互作用力
B.石塊b對a的支持力一定等于a受到的重力
C.石塊c對b的作用力一定豎直向上
D.石塊c受到水平桌面向左的摩擦力

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

5.一群氫原子處于量子數(shù)n=4激發(fā)態(tài),已知氫原子的能級公式為En=$\frac{{E}_{1}}{{n}^{2}}$(E1為n=1時的能量),當它們自發(fā)地向基態(tài)躍遷時,最多能發(fā)出6種不同頻率的光.若用以上頻率的光去照射截止頻率為v0的某金屬表面發(fā)生光電效應,則光電子的最大初動能$-\frac{15}{16}{E}_{1}$-hv0(普朗克常量為h).

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

2.某質點運動的x-t圖象如圖所示,則( 。
A.0~7s內,質點運動方向不變
B.0~3s內和5~7s內質點位移大小不相等
C.0~7s內,質點離出發(fā)點的最遠距離為6m
D.0~7s內,質點離出發(fā)點的最遠距離為27m

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

3.如圖所示,一轎車沿圓形軌道行駛,其從A到B點的過程中,所用的時間t=30s,通過的弧長l=90m,轎車與圓心O的連線掃過的角度φ=$\frac{π}{2}$.求:
(1)轎車在此過程中的位移大小x;
(2)轎車運動的向心加速度大小a.

查看答案和解析>>

同步練習冊答案