分析:由題意,t=
時刻到達(dá)虛線的粒子在=2T時刻到達(dá)熒光屏上的O點(diǎn),而在t=
~t=2T期間電場和磁場都為零,粒子沿直線運(yùn)動到O點(diǎn),說明粒子的重力不計,分情況討論:
(1)t=0時刻進(jìn)入的粒子受到的電場力和洛倫茲力平衡,故做勻速直線運(yùn)動,在t=
時刻到達(dá)O點(diǎn).
(2)t=
時刻進(jìn)入的粒子只受電場力作用,做類平拋運(yùn)動,t=T時刻到達(dá)P點(diǎn),OP=
.
(3)t=T時刻進(jìn)入的粒子只受洛倫茲力作用,洛倫茲力提供向心力,求出周期,由幾何知識求出此過程中粒子轉(zhuǎn)過的圓心角θ,并求得QO點(diǎn)間的距離.t=
時刻到達(dá)虛線位置的粒子做勻速直線運(yùn)動在t=2T時刻到達(dá)熒光屏上的O點(diǎn);
(5)以后重復(fù),運(yùn)用歸納法總結(jié)出規(guī)律.
解答:解:由于t=
時刻到達(dá)虛線的粒子在=2T時刻到達(dá)熒光屏上的O點(diǎn),而在t=
~t=2T期間電場和磁場都為零,粒子沿直線運(yùn)動到O點(diǎn),說明粒子的重力不計,故:
(1)t=0時刻進(jìn)入的粒子受到的電場力和洛倫茲力平衡,故做勻速直線運(yùn)動,在t=
時刻到達(dá)O點(diǎn).
(2)t=
時刻進(jìn)入的粒子只受電場力作用,做類平拋運(yùn)動,t=T時刻到達(dá)P點(diǎn),OP=
.
(3)t=T時刻進(jìn)入的粒子只受洛倫茲力作用,則得
x=v
0?=L
得
=
或v
0T=2L
由y=
??()2=
得
=
又由qv
0B=m
,聯(lián)立得R=
=L
粒子在磁場中運(yùn)動的周期為 T
0=
=πT
設(shè)經(jīng)過
時間即
時刻粒子運(yùn)動到F點(diǎn),設(shè)此過程中粒子轉(zhuǎn)過的圓心角為θ,則
=
,則得θ=1rad
以后粒子不受力做勻速直線運(yùn)動的打到Q點(diǎn),由QO點(diǎn)間的距離為
y
QO=(L-Lcosθ)+(L-Lsinθ)tanθ=(L-Lcos1)+)+(L-Lsin1)tan1;
(4)t=
時刻到達(dá)虛線位置的粒子做勻速直線運(yùn)動在t=2T時刻到達(dá)熒光屏上的O點(diǎn);
(5)以后重復(fù),即:t=2kT(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+
)T(k=0,1,2,3,…)時刻到達(dá)O點(diǎn);
t=(2k+
)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+1)T(k=0,1,2,3,…)時刻到達(dá)P點(diǎn);
t=(2k+1)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+1)T+
+
(k=0,1,2,3,…)時刻到達(dá)Q點(diǎn);
t=(2k+
)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+2)T(k=0,1,2,3,…)時刻到達(dá)O點(diǎn).
答:
t=2kT(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+
)T(k=0,1,2,3,…)時刻到達(dá)O點(diǎn);
t=(2k+
)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+1)T(k=0,1,2,3,…)時刻到達(dá)P點(diǎn);
t=(2k+1)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+1)T+
+
(k=0,1,2,3,…)時刻到達(dá)Q點(diǎn);
t=(2k+
)T(k=0,1,2,3,…)時刻到虛線位置的粒子,在t=(2k+2)T(k=0,1,2,3,…)時刻到達(dá)O點(diǎn).