如圖所示,半徑R=0.4m的豎直光滑半圓固定軌道與粗糙的水平面相切于A點(diǎn),質(zhì)量為m=1kg的小物體(可視為質(zhì)點(diǎn))在水平拉力F的作用下,從C點(diǎn)運(yùn)動(dòng)到A點(diǎn),物體從A點(diǎn)進(jìn)入半圓軌道的同時(shí)撤去外力F,物體沿半圓軌道通過最高點(diǎn)B后作平拋運(yùn)動(dòng),正好落在C點(diǎn),已知AC=2m,g取10m/s2,試求:
(1)在B點(diǎn)時(shí)半圓軌道對(duì)物體的彈力;
(2)若F=15N,則物體從C到A的過程中,摩擦力做的功.
(3)水平拉力至少做多少功才能使小物體到達(dá)B點(diǎn).
分析:(1)物體離開B點(diǎn)做平拋運(yùn)動(dòng),根據(jù)高度求出運(yùn)動(dòng)的時(shí)間,根據(jù)時(shí)間和AC的距離求出物體經(jīng)過B點(diǎn)時(shí)的瞬時(shí)速度.再根據(jù)牛頓第二定律求出在B點(diǎn)時(shí)半圓軌道對(duì)物體的彈力.
(2)由C到B過程,運(yùn)用動(dòng)能定理求解物體從C到A的過程中摩擦力做的功.
(3)物體恰好過最高點(diǎn),軌道對(duì)物體的彈力為零,根據(jù)牛頓第二定律求出物體到達(dá)B點(diǎn)的瞬時(shí)速度.由C到B,由動(dòng)能定理求解水平拉力做功.
解答:解:(1)物體離開B點(diǎn)做平拋運(yùn)動(dòng),則有:
   2R=
1
2
gt2
 …①
   sAC=vBt …②
在B點(diǎn):由牛頓第二定律得:NB+mg=m
v
2
B
R
…③
代入數(shù)據(jù)解得:NB=52.5N …④
(2)C到B過程,由動(dòng)能定理得:
  FsAC+Wf-mg?2R=
1
2
m
v
2
B
-0…⑤
代入數(shù)據(jù)得:Wf=-9.5J…⑥
(3)小物體要到達(dá)最高點(diǎn)B時(shí),至少應(yīng)使m
v
2
B1
R
≥mg
解得,vB2
gR
=2m/s…⑦
由C到B過程,由動(dòng)能定理得:
  WF+Wf-mg?2R=
1
2
m
v
2
B1
-0…⑧
⑥⑦⑧聯(lián)解得:WF≥19.5J…⑨
答:
(1)在B點(diǎn)時(shí)半圓軌道對(duì)物體的彈力是52.5N;
(2)若F=15N,則物體從C到A的過程中,摩擦力做的功是-9.5J.
(3)水平拉力至少做19.5J功才能使小物體到達(dá)B點(diǎn).
點(diǎn)評(píng):本題考查了平拋運(yùn)動(dòng)、圓周運(yùn)動(dòng)的知識(shí),綜合運(yùn)用了牛頓第二定律和動(dòng)能定理,是一道簡(jiǎn)單的綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2011?淮安三模)如圖所示,半徑R=0.4m的圓盤水平放置,繞豎直軸OO′勻速轉(zhuǎn)動(dòng),在圓心O正上方h=0.8m高處固定一水平軌道PQ,轉(zhuǎn)軸和水平軌道交于O′點(diǎn).一質(zhì)量m=1kg的小車(可視為質(zhì)點(diǎn)),在F=4N的水平恒力作用下,從O′左側(cè)x0=2m處由靜止開始沿軌道向右運(yùn)動(dòng),當(dāng)小車運(yùn)動(dòng)到O′點(diǎn)時(shí),從小車上自由釋放一小球,此時(shí)圓盤半徑OA與x軸重合.規(guī)定經(jīng)過O點(diǎn)水平向右為x軸正方向.小車與軌道間的動(dòng)摩擦因數(shù)μ=0.2,g取10m/s2.求:
(1)若小球剛好落到A點(diǎn),求小車運(yùn)動(dòng)到O′點(diǎn)的速度.
(2)為使小球剛好落在A點(diǎn),圓盤轉(zhuǎn)動(dòng)的角速度應(yīng)為多大.
(3)為使小球能落到圓盤上,求水平拉力F作用的距離范圍.

查看答案和解析>>

科目:高中物理 來源: 題型:

(2005?廣東)如圖所示,半徑R=0.40m的光滑半圓環(huán)軌道處于豎直平面內(nèi),半圓環(huán)與粗糙的水平地面相切于圓環(huán)的端點(diǎn)A.一質(zhì)量m=0.10kg的小球,以初速度v0=7.0m/s在水平地面上向左作加速度a=3.0m/s2的勻減速直線運(yùn)動(dòng),運(yùn)動(dòng)4.0m后,沖上豎直半圓環(huán),最后小球落在C點(diǎn).求A、C間的距離(取重力加速度g=10m/s2).

查看答案和解析>>

科目:高中物理 來源: 題型:

如圖所示,半徑R=0.8m的四分之一光滑圓弧軌道豎直固定,軌道末端水平,其右方有橫截面半徑r=0.2m的轉(zhuǎn)筒,轉(zhuǎn)筒頂端與軌道最低點(diǎn)B等高,下部有一小孔,距 頂端h=0.8m,轉(zhuǎn)筒的軸線與圓弧軌道在同一豎直平面內(nèi),開始時(shí)小孔也在這一平面內(nèi)的圖示位置.現(xiàn)使一質(zhì)量m=0.1kg的小物塊自最高點(diǎn)A由靜止開始沿圓弧軌道滑下,到達(dá)軌道最低點(diǎn)B時(shí)轉(zhuǎn)筒立刻以某一角速度勻速轉(zhuǎn)動(dòng)起來,且小物塊最終正好進(jìn)入小孔.不計(jì)空氣阻力,g取l0m/s2,求:
(1)小物塊到達(dá)B點(diǎn)時(shí)對(duì)軌道的壓力大。
(2)轉(zhuǎn)筒軸線距B點(diǎn)的距離L;
(3)轉(zhuǎn)筒轉(zhuǎn)動(dòng)的角速度ω

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,半徑r=0.8m的光滑圓軌道被豎直固定在水平地面上,圓軌道最低處有一質(zhì)量為0.4kg的小球(小球的半徑比r小很多).現(xiàn)給小球一個(gè)水平向右的初速度v0,下列關(guān)于在小球的運(yùn)動(dòng)過程中說法正確的是(g取10m/s2)(  )
A、v0≤4m/s可以使小球不脫離軌道
B、v0≥4
2
m/s可以使小球不脫離軌道
C、設(shè)小球能在圓軌道中做完整的圓周運(yùn)動(dòng),在最低點(diǎn)與最高點(diǎn)對(duì)軌道的壓力之差為24N
D、設(shè)小球能在圓軌道中做完整的圓周運(yùn)動(dòng),在最低點(diǎn)與最高點(diǎn)對(duì)軌道的壓力之差為20N

查看答案和解析>>

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,半徑R=0.5m的光滑圓弧面CDM分別與光滑斜面體ABC和斜面MN相切于C、M點(diǎn),O為圓弧圓心,D為圓弧最低點(diǎn),斜面體ABC固定在地面上,頂端B安裝一定滑輪,一輕質(zhì)軟細(xì)繩跨過定滑輪(不計(jì)滑輪摩擦)分別連接小物塊P、Q(兩邊細(xì)繩分別與對(duì)應(yīng)斜面平行),并保持P、Q兩物塊靜止.若PC間距為L(zhǎng)1=0.25m,斜面MN粗糙且足夠長(zhǎng),物塊P質(zhì)量m1=3kg,與MN間的動(dòng)摩擦因數(shù)μ=
13
,(sin37°=0,6,cos37°=0.8,g=l0m/s2),求:
(1)小物塊Q的質(zhì)量m2;
(2)剪斷細(xì)線,物塊P第一次過M點(diǎn)的速度大;
(3)剪斷細(xì)線,物塊P第一次過M點(diǎn)后0.3s到達(dá)K點(diǎn)(未畫出),求MK間距大小;
(4)物塊P在MN斜面上滑行的總路程.

查看答案和解析>>

同步練習(xí)冊(cè)答案