分析 (1)當彈簧第一次恢復原長時,小球m2剛離開墻壁,由機械能守恒求出小球m1的速度.
(2)在以后的運動中,當兩球的速度相同時,彈簧的彈性勢能最大,由動量守恒定律求得共同速度,再由系統(tǒng)的機械能守恒定律求解最大彈性勢能.
(3)小球m2離開墻壁后,彈簧第一次恢復原長時,小球m2的速度最大,由機械能守恒結合動量守恒求解.
解答 解:(1)當彈簧第一次恢復原長時,小球m2剛離開墻壁,小球m1的速度設為v0,由系統(tǒng)的機械能守恒有:
$\frac{1}{2}$m1v02=E0
解得:v0=$\sqrt{\frac{2{E}_{0}}{{m}_{1}}}$
(2)以后運動中,當彈簧的彈性勢能最大時,兩球的速度相等,設為v,規(guī)定向右為正方向,由動量守恒定律有:
m1v0=(m1+m2)v
由機械能守恒定律得:
最大彈性勢能 EP=$\frac{1}{2}$m1v02-$\frac{1}{2}({m}_{1}+{m}_{2}){v}^{2}$
聯(lián)立解得 EP=$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}{E}_{0}$
(3)小球m2離開墻壁后,彈簧第一次恢復原長時,小球m2的速度最大,根據(jù)動量守恒得:
m1v0=m1vA1+m2v2
由機械能守恒定律得
$\frac{1}{2}$m1v02=$\frac{1}{2}$m1v12+$\frac{1}{2}$m2v22;
解得小球m2第一次獲得的最大速度 v2=$\frac{2{m}_{1}}{{m}_{1}+{m}_{2}}$v0=$\frac{2{m}_{1}}{{m}_{1}+{m}_{2}}$$\sqrt{\frac{2{E}_{0}}{{m}_{1}}}$
答:
(1)彈簧第一次恢復原長時,小球m1的速度是$\sqrt{\frac{2{E}_{0}}{{m}_{1}}}$;
(2)在以后的運動中彈簧能達到的最大彈性勢能是$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}{E}_{0}$;
(3)小球m2第一次獲得的最大速度$\frac{2{m}_{1}}{{m}_{1}+{m}_{2}}$$\sqrt{\frac{2{E}_{0}}{{m}_{1}}}$.
點評 正確認識動量守恒條件和機械能守恒條件是解決本題的關鍵.如果一個系統(tǒng)不受外力或所受外力的矢量和為零,那么這個系統(tǒng)的總動量保持不變;系統(tǒng)只有重力或彈力做功為機械能守恒條件.
科目:高中物理 來源: 題型:多選題
A. | 沿CD方向的電阻率為$\frac{bc}{a}$•R | |
B. | 沿CD方向的電阻為$\frac{ac}{^{2}}$•R | |
C. | 金屬塊上表面的電勢等于下表面的電勢 | |
D. | 金屬塊上表面的電勢低于下表面的電勢 |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | $\frac{1}{8}$F | B. | $\frac{1}{2}$F | C. | $\frac{3}{8}$F | D. | $\frac{5}{16}$F |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 研究運動員做花樣滑冰動作和姿勢時,可以把運動員看成質(zhì)點 | |
B. | 研究繞人造地球衛(wèi)星的運動時,可以把衛(wèi)星看成質(zhì)點 | |
C. | “12月6日17時47分”和“361秒鐘”,前者表示“時間”,后者表示“時刻” | |
D. | 嫦娥三號探測器繞月球飛行一圈,它的位移和路程都為零 |
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com