相關(guān)習(xí)題
 0  30127  30135  30141  30145  30151  30153  30157  30163  30165  30171  30177  30181  30183  30187  30193  30195  30201  30205  30207  30211  30213  30217  30219  30221  30222  30223  30225  30226  30227  30229  30231  30235  30237  30241  30243  30247  30253  30255  30261  30265  30267  30271  30277  30283  30285  30291  30295  30297  30303  30307  30313  30321  266669 

科目: 來(lái)源: 題型:

精英家教網(wǎng)如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn),那么異面直線OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目: 來(lái)源: 題型:

4、兩條相交直線l、m都在平面α內(nèi)且都不在平面β內(nèi).命題甲:l和m中至少有一條與β相交,命題乙:平面α與β相交,則甲是乙的( 。

查看答案和解析>>

科目: 來(lái)源: 題型:

精英家教網(wǎng)如圖,正四面體S-ABC中,D為SC的中點(diǎn),則BD與SA所成角的余弦值是( 。
A、
3
3
B、
2
3
C、
3
6
D、
2
6

查看答案和解析>>

科目: 來(lái)源: 題型:

2、如圖,直線a、b相交于點(diǎn)O且a、b成60°角,過(guò)點(diǎn)O與a、b都成60°角的直線有(  )

查看答案和解析>>

科目: 來(lái)源: 題型:

1、若a,b是異面直線,則只需具備的條件是( 。

查看答案和解析>>

科目: 來(lái)源: 題型:

精英家教網(wǎng)如圖,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個(gè)點(diǎn),點(diǎn)Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標(biāo)原點(diǎn)).
(1)寫(xiě)出a1,a2,a3;
(2)求出點(diǎn)An(an,0)(n∈N*)的橫坐標(biāo)an關(guān)于n的表達(dá)式;
(3)設(shè)bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
1
6
bn
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(ωx)-2sin2
ωx
2
+m(ω>0)的最小正周期為3π,當(dāng)x∈[0,π]時(shí),函數(shù)f(x)的最小值為0.
(1)求函數(shù)f(x)的表達(dá)式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

精英家教網(wǎng)某校從參加高一年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫(huà)出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:
(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從成績(jī)是70分以上(包括70分)的學(xué)生中選兩人,求這兩人的成績(jī)?cè)赱80,90)內(nèi)的人數(shù)的分布列及期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

在數(shù)列{an}中,如果存在非零常數(shù)T,使得am+T=am對(duì)任意正整數(shù)m均成立,那么就稱(chēng){an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿(mǎn)足xn+1=|xn-xn-1|(n≥2,n∈N*),且x1=1,x2=a(a≤1,a≠0),當(dāng)數(shù)列{xn}周期為3時(shí),則該數(shù)列的前2007項(xiàng)的和為
 

查看答案和解析>>

科目: 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上的點(diǎn)到曲線C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t為參數(shù))上的點(diǎn)的最短距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案