相關(guān)習題
 0  27396  27404  27410  27414  27420  27422  27426  27432  27434  27440  27446  27450  27452  27456  27462  27464  27470  27474  27476  27480  27482  27486  27488  27490  27491  27492  27494  27495  27496  27498  27500  27504  27506  27510  27512  27516  27522  27524  27530  27534  27536  27540  27546  27552  27554  27560  27564  27566  27572  27576  27582  27590  266669 

科目: 來源: 題型:

1、已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于(  )

查看答案和解析>>

科目: 來源: 題型:

現(xiàn)有變換公式T:
4
5
x+
3
5
y=x′
3
5
x-
4
5
y=y′
可把平面直角坐標系上的一點P(x,y)變換到這一平面上的一點P′(x′,y′).
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程,并求出其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)在(2)的基礎(chǔ)上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換T下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的首項為1,前n項和為Sn,且滿足an+1=3Sn,n∈N*.數(shù)列{bn}滿足bn=log4an
(1)求數(shù)列{an}的通項公式;
(2)當n≥2時,試比較b1+b2+…+bn
1
2
(n-1)2
的大小,并說明理由;
(3)試判斷:當n∈N*時,向量
a
=(an,bn)是否可能恰為直線l:y=
1
2
x+1
的方向向量?請說明你的理由.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b件.經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進行電視廣告的宣傳,每天的銷售量S(件)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).
(1)試寫出該產(chǎn)品每天的銷售量S(件)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=2,BC=
2
∠ABC=
4
.以點B為圓心,線段BC的長為半徑的半圓分別交AB所在直線于點E、F,交線段AC于點D,求弧
CD
的長.(精確到0.01)

查看答案和解析>>

科目: 來源: 題型:

已知a∈R,且以下命題都為真命題:
命題p:實系數(shù)一元二次方程x2+ax+2=0的兩根都是虛數(shù);
命題q:存在復數(shù)z同時滿足|z|=2且|z+a|=1.
求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

若函數(shù)f(x)=x3-ax(a>0)的零點都在區(qū)間[-10,10]上,則使得方程f(x)=1000有正整數(shù)解的實數(shù)a的取值個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目: 來源: 題型:

一個正三棱錐的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,則該正三棱錐的體積是( 。
A、
3
3
4
B、
3
3
C、
3
4
D、
3
12

查看答案和解析>>

科目: 來源: 題型:

已知拋物線x2+my=0上的點到定點(0,4)和到定直線y=-4的距離相等,則m=(  )
A、
1
16
B、-
1
16
C、16
D、-16

查看答案和解析>>

科目: 來源: 題型:

已知條件p:x>1,條件q:
1
x
<1
,則p是q成立的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分也非必要條件

查看答案和解析>>

同步練習冊答案