相關(guān)習(xí)題
 0  266143  266151  266157  266161  266167  266169  266173  266179  266181  266187  266193  266197  266199  266203  266209  266211  266217  266221  266223  266227  266229  266233  266235  266237  266238  266239  266241  266242  266243  266245  266247  266251  266253  266257  266259  266263  266269  266271  266277  266281  266283  266287  266293  266299  266301  266307  266311  266313  266319  266323  266329  266337  266669 

科目: 來源: 題型:

【題目】某公司準(zhǔn)備加大對一項產(chǎn)品的科技改造,經(jīng)過充分的市場調(diào)研與模擬,得到x,y之間的一組數(shù),其中x(單位:百萬元)是科技改造的總投入,y(單位:百萬元)是改造后的額外收益

x

2

3

5

7

8

y

5

8

12

14

16

其中,是對當(dāng)?shù)?/span>GDP的增長貢獻(xiàn)值.

1)若從五組數(shù)據(jù)中任取兩組,求至少有一組滿足的概率;

2)對于表中數(shù)據(jù),甲、乙兩個同學(xué)給出的擬合直線方程為:,,試用最小二乘法判斷哪條直線的擬合程度更好.(附:;Q越小擬合度越好.

查看答案和解析>>

科目: 來源: 題型:

【題目】兩個好朋友小聰和小明,在同一天小聰從深圳到黃石,中午到武漢站的時間為13:30,然后再乘坐城際鐵路到黃石,中間有1小時在武漢站候車室休息.小明從沌口開發(fā)區(qū)坐出租車到武漢站,小明到達(dá)武漢站的時間為14:00~15:00之間任一時刻到達(dá),然后乘坐發(fā)車時間為15:30的高鐵到北京,那么兩個好朋友能夠在武漢站會面的概率是(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】1)證明函數(shù)在區(qū)間上單調(diào)遞增;

2)證明函數(shù)(-π,0)上有且僅有一個極大值點

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)fx)=|2xa|+|xa+1|

1)當(dāng)a4時,求解不等式fx≥8;

2)已知關(guān)于x的不等式fxR上恒成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2ρ24ρcosθ+30

1)求曲線C1的一般方程和曲線C2的直角坐標(biāo)方程;

2)若點P在曲線C1上,點Q曲線C2上,求|PQ|的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線Γy22pxp0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足2,2

1)求拋物線Γ的方程;

2)已知經(jīng)過點A3,﹣2)的直線交拋物線ΓM,N兩點,經(jīng)過定點B3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】根據(jù)氣象部門預(yù)報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風(fēng)暴中心B正以30km/h的速度向正北方向移動,距離風(fēng)暴中心450km以內(nèi)的地區(qū)都將受到影響,從現(xiàn)在起經(jīng)過___小時后該碼頭A將受到熱帶風(fēng)暴的影響(精確到0.01).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求的極值;

2)設(shè),對任意都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.

1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標(biāo)為m,AB的弦長,并求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,且.

(1)證明:平面

(2)設(shè)為棱的中點,當(dāng)四面體的體積取得最大值時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案