相關(guān)習(xí)題
 0  266097  266105  266111  266115  266121  266123  266127  266133  266135  266141  266147  266151  266153  266157  266163  266165  266171  266175  266177  266181  266183  266187  266189  266191  266192  266193  266195  266196  266197  266199  266201  266205  266207  266211  266213  266217  266223  266225  266231  266235  266237  266241  266247  266253  266255  266261  266265  266267  266273  266277  266283  266291  266669 

科目: 來源: 題型:

【題目】給出以下四個結(jié)論:

(1)函數(shù)的對稱中心是;

(2)若關(guān)于的方程沒有實數(shù)根,則的取值范圍是;

(3)已知點與點在直線兩側(cè),則

(4)若將函數(shù)的圖象向右平移個單位后變?yōu)榕己瘮?shù),則的最小值是;

其中正確的結(jié)論是:_____________________(把所有正確命題的序號填上).

查看答案和解析>>

科目: 來源: 題型:

【題目】貴陽市交管部門于20184月對貴陽市長期執(zhí)行的“兩限”政策進行了調(diào)整,調(diào)整后貴陽市貴A普客小汽車擁有和外地牌照汽車一樣的駛?cè)胍画h(huán)開四停四的權(quán)利,為統(tǒng)計開放政策實施后貴陽市一環(huán)內(nèi)城區(qū)的交通流量狀況,市交管部門抽取了某月30天內(nèi)的日均汽車流量與實際容納量進行對比,比值記為,若該比值不超過1稱為“暢通”,否則稱為“擁堵”,如圖所示的程序框圖實現(xiàn)的功能是(

A.30天內(nèi)交通的暢通率B.30天內(nèi)交通的擁堵率

C.30天內(nèi)交通的暢通天數(shù)D.30天內(nèi)交通的擁堵天數(shù)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)axx2g(x)xlna,a>1.

(1)求證:函數(shù)F(x)f(x)g(x)(0,+∞)上單調(diào)遞增;

(2)若函數(shù)y3有四個零點,求b的取值范圍;

(3)若對于任意的x1,x2∈[1,1]時,都有|F(x2)F(x1)|≤e22恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知向量,其中,為銳角,的圖象的兩個相鄰對稱中心的距離為,且當(dāng)時,取得最大值3

1)求的對稱中心

2)將的圖象先向下平移1個單位,再將各點橫坐標伸長到原來的2倍(縱坐標不變)得到的圖象,求的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

(1)根據(jù)散點圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測活動推出第天使用掃碼支付的 人次;

(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下

車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計該車隊每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .

查看答案和解析>>

科目: 來源: 題型:

【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識測試,統(tǒng)計得到成績與專業(yè)的列聯(lián)表:( )

優(yōu)秀

非優(yōu)秀

總計

14

6

20

7

13

20

總計

21

19

40

附:參考公式及數(shù)據(jù):

(1)統(tǒng)計量:,().

(2)獨立性檢驗的臨界值表:

0.050

0.010

3.841

6.635

則下列說法正確的是

A. 的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

B. 的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

C. 的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

D. 的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)處取得極小值

(1)求實數(shù)的值;

(2)設(shè),討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時,則平行AC直線即可故a=-2,當(dāng)a>0時,則直線平行AB即可,故a=1

點睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個數(shù)為無數(shù)個時的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實,一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對應(yīng)的大斜,中斜,小斜上的高;則 .若在, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直四棱柱的底面ABCD是菱形,,E上任意一點.

1)求證:平面平面

2)設(shè),當(dāng)E的中點時,求點E到平面的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】在新高考改革中,打破了文理分科的模式,不少省份采用了,等模式.其中模式的操作又更受歡迎,即語數(shù)外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學(xué)生的選科情況,從高二年級的2000名學(xué)生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學(xué)生進行調(diào)查.

1)已知抽取的n名學(xué)生中含男生110人,求n的值及抽取到的女生人數(shù);

2)在(1)的情況下對抽取到的n名同學(xué)選物理選歷史進行問卷調(diào)查,得到下列2×2列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有99%的把握認為選科目與性別有關(guān)?

選物理

選歷史

合計

男生

90

女生

30

合計

3)在(2)的條件下,從抽取的選歷史的學(xué)生中按性別分層抽樣再抽取5名,再從這5名學(xué)生中抽取2人了解選政治、地理、化學(xué)、生物的情況,求2人至少有1名男生的概率.

參考公式:.

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案