相關(guān)習題
 0  266035  266043  266049  266053  266059  266061  266065  266071  266073  266079  266085  266089  266091  266095  266101  266103  266109  266113  266115  266119  266121  266125  266127  266129  266130  266131  266133  266134  266135  266137  266139  266143  266145  266149  266151  266155  266161  266163  266169  266173  266175  266179  266185  266191  266193  266199  266203  266205  266211  266215  266221  266229  266669 

科目: 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為α為參數(shù),直線ly=kxk0),以O為極點,x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C的極坐標方程;

(Ⅱ)若直線l與曲線C交于AB兩點,求|OA||OB|的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖是甲、乙、丙三個企業(yè)的產(chǎn)品成本(單位:萬元)及其構(gòu)成比例,則下列判斷正確的是(  )

A. 乙企業(yè)支付的工資所占成本的比重在三個企業(yè)中最大

B. 由于丙企業(yè)生產(chǎn)規(guī)模大,所以它的其他費用開支所占成本的比重也最大

C. 甲企業(yè)本著勤儉創(chuàng)業(yè)的原則,將其他費用支出降到了最低點

D. 乙企業(yè)用于工資和其他費用支出額比甲丙都高

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

若曲線在點處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;

時,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個不同的極值點,記作,,且,證明:為自然對數(shù)).

查看答案和解析>>

科目: 來源: 題型:

【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為P上一動點,,Q的軌跡為.

1)求曲線的極坐標方程,并化為直角坐標方程,

2)若點,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線的交點為A,B,當取最小值時,求直線l的普通方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線是曲線的切線.

1)求函數(shù)的解析式,

2)若,證明:對于任意,有且僅有一個零點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,M是橢圓E上的一個動點,且的面積的最大值為.

1)求橢圓E的標準方程,

2)若,四邊形ABCD內(nèi)接于橢圓E,,記直線ADBC的斜率分別為,,求證:為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回歸方程 其中,為常數(shù))進行模擬.

(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150/箱,試預測該新奇水果100箱的利潤是多少元.|

(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.

i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;

(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)

參考數(shù)據(jù)與公式:設,則

0.54

6.8

1.53

0.45

線性回歸直線中,

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在斜三棱柱中,平面平面,,,均為正三角形,EAB的中點.

(Ⅰ)證明:平面

(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

同步練習冊答案