科目: 來源: 題型:
【題目】已知數(shù)列中,.又?jǐn)?shù)列滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若數(shù)列是單調(diào)遞增數(shù)列,求實(shí)數(shù)a的取值范圍;
(3)若數(shù)列的各項(xiàng)皆為正數(shù),設(shè)是數(shù)列的前n和,問:是否存在整數(shù)a,使得數(shù)列是單調(diào)遞減數(shù)列?若存在,求出整數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是菱形,AC與BD交于點(diǎn)O,底面ABCD,點(diǎn)M為PC中點(diǎn),,,.
(1)求異面直線AP與BM所成角的余弦值;
(2)求平面ABM與平面PAC所成銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,兩焦點(diǎn)分別為和,橢圓上一點(diǎn)到和的距離之和為12.圓的圓心為.
(1)求的面積;
(2)若橢圓上所有點(diǎn)都在一個(gè)圓內(nèi),則稱圓包圍這個(gè)橢圓.問:是否存在實(shí)數(shù)k使得圓包圍橢圓?請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am,則稱數(shù)列{an}為S數(shù)列.
(1)S數(shù)列的任意一項(xiàng)是否可以寫成其某兩項(xiàng)的差?請(qǐng)說明理由.
(2)①是否存在等差數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.
②是否存在正項(xiàng)遞增等比數(shù)列為S數(shù)列,若存在,請(qǐng)舉例說明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)f(x)的圖象在點(diǎn)(2,f(2))處的切線方程為9x﹣y+b=0,求實(shí)數(shù)a,b的值;
(2)若a≤0,求f(x)的單調(diào)減區(qū)間;
(3)對(duì)一切實(shí)數(shù)a∈(0,1),求f(x)的極小值的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),(x>0).
(1)當(dāng)0<a<b,且f(a)=f(b)時(shí),求證:ab>1;
(2)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域、值域都是[a,b],若存在,則求出a,b的值,若不存在,請(qǐng)說明理由.
(3)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)?/span>[a,b]時(shí),值域?yàn)?/span>[ma,mb](m≠0),求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x2+1,g(x)=4x+1,的定義域都是集合A,函數(shù)f(x)和g(x)的值域分別為S和T,
(1)若A=[1,2],求S∩T
(2)若A=[0,m]且S=T,求實(shí)數(shù)m的值
(3)若對(duì)于集合A的任意一個(gè)數(shù)x的值都有f(x)=g(x),求集合A.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,是過點(diǎn)P(1,1),傾斜角為的直線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(1)寫出直線的參數(shù)方程及曲線C的直角坐標(biāo)方程;
(2)直線L與曲線C交于AB兩點(diǎn),若弦AB被點(diǎn)P平分時(shí),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)令,討論函數(shù)的單調(diào)性;
(3)當(dāng)時(shí),,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com