科目: 來(lái)源: 題型:
【題目】如圖,已知直線與拋物線()交于、兩點(diǎn),為坐標(biāo)原點(diǎn),.
(1)求直線的方程和拋物線的方程;
(2)若拋物線上一動(dòng)點(diǎn)從到運(yùn)動(dòng)時(shí)(不與、重合),求面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知數(shù)列中,,前項(xiàng)和為,且.
(1)求,的值;
(2)證明:數(shù)列是等差數(shù)列,并寫出其通項(xiàng)公式;
(3)設(shè)(),試問(wèn)是否存在正整數(shù),(其中,使得,,成等比數(shù)列?若存在,求出所有滿足條件的數(shù)對(duì);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù),,函數(shù),記.把函數(shù)的最大值稱為函數(shù)的“線性擬合度”.
(1)設(shè)函數(shù),,,求此時(shí)函數(shù)的“線性擬合度”;
(2)若函數(shù),的值域?yàn)?/span>(),,求證:;
(3)設(shè),,求的值,使得函數(shù)的“線性擬合度”最小,并求出的最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)在點(diǎn)處切線的斜率為1.
(1)求的值;
(2)設(shè),若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知點(diǎn),是圓上的一個(gè)動(dòng)點(diǎn),為圓心,線段的垂直平分線與直線的交點(diǎn)為.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)與軸的正半軸交于點(diǎn),直線與交于兩點(diǎn)(不經(jīng)過(guò)點(diǎn)),且,證明:直線經(jīng)過(guò)定點(diǎn),并寫出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,四棱柱中,是棱上的一點(diǎn),平面,,,.
(1)若是的中點(diǎn),證明:平面平面;
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖是某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷量約占,電視機(jī)銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )
A. 電視機(jī)銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機(jī)的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為,M為橢圓上任意一點(diǎn),當(dāng)∠F1MF2=90°時(shí),△F1MF2的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)A是橢圓C上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線AF1,AF2分別與橢圓交于點(diǎn)B,D,設(shè)直線BD的斜率為k1,直線OA的斜率為k2,求證:k1·k2等于定值.
【答案】(Ⅰ)(Ⅱ)見解析
【解析】
(Ⅰ)由題意可求得,則,橢圓的方程為.
(Ⅱ)設(shè),,
當(dāng)直線的斜率不存在或直線的斜率不存在時(shí),.
當(dāng)直線、的斜率存在時(shí),,設(shè)直線的方程為,聯(lián)立直線方程與橢圓方程,結(jié)合韋達(dá)定理計(jì)算可得直線的斜率為,直線的斜率為,則.綜上可得:直線與的斜率之積為定值.
(Ⅰ)設(shè)由題,
解得,則,橢圓的方程為.
(Ⅱ)設(shè),,當(dāng)直線的斜率不存在時(shí),
設(shè),則,直線的方程為代入,
可得 ,,則,
直線的斜率為,直線的斜率為,
,
當(dāng)直線的斜率不存在時(shí),同理可得.
當(dāng)直線、的斜率存在時(shí),設(shè)直線的方程為,
則由消去可得:,
又,則,代入上述方程可得:
,,
則 ,
設(shè)直線的方程為,同理可得 ,
直線的斜率為
直線的斜率為, .
所以,直線與的斜率之積為定值,即.
【點(diǎn)睛】
(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.
(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)f(x)=(x+b)(-a),(b>0),在(-1,f(-1))處的切線方程為(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2,且x1<x2,證明:x2-x1≤1+.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,分別是橢圓的左右兩個(gè)頂點(diǎn),圓的半徑為,過(guò)點(diǎn)作圓的切線,切點(diǎn)為,在軸的上方交橢圓于點(diǎn).
(1)求直線的方程;
(2)求的值;
(3)設(shè)為常數(shù),過(guò)點(diǎn)作兩條互相垂直的直線,分別交橢圓于點(diǎn),分別交圓于點(diǎn),記三角形和三角的面積分別為.求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com