相關習題
 0  265725  265733  265739  265743  265749  265751  265755  265761  265763  265769  265775  265779  265781  265785  265791  265793  265799  265803  265805  265809  265811  265815  265817  265819  265820  265821  265823  265824  265825  265827  265829  265833  265835  265839  265841  265845  265851  265853  265859  265863  265865  265869  265875  265881  265883  265889  265893  265895  265901  265905  265911  265919  266669 

科目: 來源: 題型:

【題目】已知,是由)個整數(shù),,按任意次序排列而成的數(shù)列,數(shù)列滿足),,,,按從大到小的順序排列而成的數(shù)列,記.

1)證明:當為正偶數(shù)時,不存在滿足)的數(shù)列.

2)寫出),并用含的式子表示.

3)利用,證明:.(參考:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓),過原點的兩條直線分別與交于點、,得到平行四邊形.

1)當為正方形時,求該正方形的面積.

2)若直線關于軸對稱,上任意一點的距離分別為,當為定值時,求此時直線的斜率及該定值.

3)當為菱形,且圓內切于菱形時,求,滿足的關系式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,的長分別為,,,則( .

A.對任意的,均存在以,為三邊的三角形

B.對任意的,均不存在以,為三邊的三角形

C.對任意的,均存在以,,為三邊的三角形

D.對任意的,均不存在以,,為三邊的三角形

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列中,,的前項和為,且滿足.

1)試求數(shù)列的通項公式;

2)令的前項和,證明:

3)證明:對任意給定的,均存在,使得時,(2)中的恒成立.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知兩動圓),把它們的公共點的軌跡記為曲線,若曲線軸的正半軸的交點為,且曲線上的相異兩點滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過一定點,并求此定點的坐標;

3)求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示:湖面上甲、乙、丙三艘船沿著同一條直線航行,某一時刻,甲船在最前面的點處,乙船在中間點處,丙船在最后面的點處,且.一架無人機在空中的點處對它們進行數(shù)據(jù)測量,在同一時刻測得, .(船只與無人機的大小及其它因素忽略不計)

(1)求此時無人機到甲、丙兩船的距離之比;

(2)若此時甲、乙兩船相距100米,求無人機到丙船的距離.(精確到1米)

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖:在四棱錐中, 平面,底面是正方形, .

(1)求異面直線所成角的大。ńY果用反三角函數(shù)值表示);

(2)求點分別是棱的中點,求證: 平面.

查看答案和解析>>

科目: 來源: 題型:

【題目】設單調函數(shù)的定義域為,值域為,如果單調函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個保值域函數(shù).已知定義域為的函數(shù),函數(shù)互為反函數(shù),且的一個保值域函數(shù)”,的一個保值域函數(shù),則__________

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論函數(shù)的單調性;

(2)若不等式對于任意成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某省在2017年啟動了“3+3”高考模式.所謂“3+3”高考模式,就是語文、數(shù)學、外語(簡稱語、數(shù)、外)為高考必考科目,從物理、化學、生物、政治、歷史、地理(簡稱理、化、生、政、史、地)六門學科中任選三門作為選考科目.該省某中學2017級高一新生共有990人,學籍號的末四位數(shù)從00010990.

1)現(xiàn)從高一學生中抽樣調查110名學生的選考情況,問:采用什么樣的抽樣方法較為恰當?(只寫出結論,不需要說明理由)

2)據(jù)某教育機構統(tǒng)計,學生所選三門學科在將來報考專業(yè)時受限制的百分比是不同的.該機構統(tǒng)計了受限百分比較小的十二種選擇的百分比值,制作出如下條形圖.

設以上條形圖中受限百分比的均值為,標準差為.如果一個學生所選三門學科專業(yè)受限百分比在區(qū)間內,我們稱該選擇為恰當選擇”.該校李明同學選擇了化學,然后從余下五門選考科目中任選兩門.問李明的選擇為恰當選擇"的概率是多少?(均值,標準差均精確到0.1

(參考公式和數(shù)據(jù):,)

查看答案和解析>>

同步練習冊答案