科目: 來源: 題型:
【題目】端午節(jié)是中國傳統(tǒng)節(jié)日之一節(jié)日期間,各大商場各種品牌的“粽子戰(zhàn)”便悄然打響.某記者走訪市場發(fā)現(xiàn),各大商場粽子種類繁多,價格不一根據(jù)數(shù)據(jù)統(tǒng)計分析,得到了某商場不同種類的粽子銷售價格(單位:元/千克)的頻數(shù)分布表,如表一所示.
表一:
價格/(元/千克) | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) |
種類數(shù) | 4 | 12 | 16 | 6 | 2 |
在調(diào)查中,記者還發(fā)現(xiàn),各大品牌在餡料方面還做足了功課,滿足了市民多樣化的需求除了蜜棗、豆沙等傳統(tǒng)餡料粽,很多品牌還推出了鮮肉、巧克力、海鮮等特色餡料粽在該商場內(nèi),記者隨機對100名顧客的年齡和粽子口味偏好進(jìn)行了調(diào)查,結(jié)果如表二.
表二:
喜歡傳統(tǒng)餡料粽 | 喜歡特色餡料粽 | 總計 | |
40歲以下 | 30 | 15 | 45 |
40歲及以上 | 50 | 5 | 55 |
總計 | 80 | 20 | 100 |
(1)根據(jù)表一估計該商場粽子的平均銷售價(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)根據(jù)表二信息能否有95%的把握認(rèn)為顧客的粽子口味偏好與年齡有關(guān)?
參考公式和數(shù)據(jù):(其中為樣本容量)
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】瑞士數(shù)學(xué)家、物理學(xué)家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點數(shù)V、棱數(shù)E及面數(shù)F滿足等式V﹣E+F=2,這個等式稱為歐拉多面體公式,被認(rèn)為是數(shù)學(xué)領(lǐng)域最漂亮、簡潔的公式之一,現(xiàn)實生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由12塊黑色正五邊形面料和20塊白色正六邊形面料構(gòu)成的.20世紀(jì)80年代,化學(xué)家們成功地以碳原子為頂點組成了該種結(jié)構(gòu),排列出全世界最小的一顆“足球”,稱為“巴克球(Buckyball)”.則“巴克球”的頂點個數(shù)為( )
A.180B.120C.60D.30
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為提高學(xué)生的身體素質(zhì),實施“每天一節(jié)體育課”,并定期對學(xué)生進(jìn)行體能測驗在一次體能測驗中,某班甲、乙、丙三位同學(xué)的成績(單位:分)及班內(nèi)排名如表(假定成績均為整數(shù))現(xiàn)從該班測驗成績?yōu)?/span>94和95的同學(xué)中隨機抽取兩位,這兩位同學(xué)成績相同的概率是( )
成績/分 | 班內(nèi)排名 | |
甲 | 95 | 9 |
乙 | 94 | 11 |
丙 | 93 | 14 |
A.0.2B.0.4C.0.5D.0.6
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列的前項和為,且
()求數(shù)列的通項公式;
()若數(shù)列滿足,求數(shù)列的通項公式;
()在()的條件下,設(shè),問是否存在實數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),實數(shù)滿足;
(1)當(dāng)函數(shù)的定義域為時,求的值域;
(2)求函數(shù)關(guān)系式,并求函數(shù)的定義域;
(3)在(2)的結(jié)論中,對任意,都存在,使得成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C1:ρ=2cosθ,.
(1)求C1與C2交點的直角坐標(biāo);
(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且sin2A+sin2B+sin2C=sinAsinB+sinBsinC+sinCsin A.
(1)證明:△ABC是正三角形;
(2)如圖,點D在邊BC的延長線上,且BC=2CD,AD,求sin∠BAD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com